{"id":6106,"date":"2021-10-07T17:36:16","date_gmt":"2021-10-07T12:06:16","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6106"},"modified":"2021-10-08T01:36:42","modified_gmt":"2021-10-07T20:06:42","slug":"formula-for-angle-between-two-vectors","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/","title":{"rendered":"Formula for Angle Between Two Vectors"},"content":{"rendered":"

Here, we will find the formula for angle between two vectors in terms of their direction cosines and also in terms of their direction ratios. The angle between two lines is defined as the angle between two vectors parallel to them. So, the results derived for vectors will also be applicalble to lines,<\/p>\n

Let’s begin –<\/p>\n

Formula for Angle Between Two Vectors<\/h2>\n

(a) Angle Between Two Vectors in Terms of Direction Cosines<\/strong><\/h4>\n

Let \\(\\vec{a}\\) and \\(\\vec{b}\\) be two vectors with direction cosines \\(l_1\\), \\(m_1\\), \\(n_1\\) and \\(l_2\\), \\(m_2\\), \\(n_2\\) respectively. Then, the unit vectors \\(\\hat{a}\\) and \\(\\hat{b}\\) in the direction of \\(\\vec{a}\\) and \\(\\vec{b}\\) respectively are given by<\/p>\n

\n

\\(\\hat{a}\\) = \\(l_1\\hat{i} + m_1\\hat{j} + n_1\\hat{k}\\) and,<\/p>\n

\\(\\hat{b}\\) = \\(l_2\\hat{i} + m_2\\hat{j} + n_2\\hat{k}\\)<\/p>\n

Let \\(\\theta\\) be the angle between \\(\\vec{a}\\) and \\(\\vec{b}\\). Then, \\(\\theta\\) is also the angle between \\(\\hat{a}\\) and \\(\\hat{b}\\)<\/p>\n

\\(\\therefore\\) cos\\(\\theta\\) = \\(\\hat{a}.\\hat{b}\\over | \\hat{a} | | \\hat{b} |\\)<\/p>\n

\\(\\implies\\) cos\\(\\theta\\) = \\((l_1\\hat{i} + m_1\\hat{j} + n_1\\hat{k}).(l_2\\hat{i} + m_2\\hat{j} + n_2\\hat{k})\\over (1)(1)\\)<\/p>\n

\\(\\because\\) \\(\\hat{a}\\) and \\(\\hat{b}\\) are unit vectors, therefore, | \\(\\hat{a}\\) | and | \\(\\hat{b}\\) | is 1.<\/p>\n

\\(\\implies\\) cos\\(\\theta\\) = \\(l_1l_2 + m_1m_2 + n_1n_2\\)<\/p>\n<\/blockquote>\n

Condition for Perpendicularity<\/strong> : If \\(\\vec{a}\\) and \\(\\vec{b}\\) are perpendicular, then<\/p>\n

\n

\\(l_1l_2 + m_1m_2 + n_1n_2\\) = 0<\/p>\n<\/blockquote>\n

Condition for Parallelism<\/strong> : If \\(\\vec{a}\\) and \\(\\vec{b}\\) are parallel, then<\/p>\n

\n

\\(l_1\\over l_2\\) = \\(m_1\\over m_2\\) = \\(n_1\\over n_2\\) <\/p>\n<\/blockquote>\n

(b) <\/strong>Angle Between Two Vectors in <\/strong>Terms of Direction Ratios<\/strong><\/h4>\n

Let \\(\\vec{a}\\) and \\(\\vec{b}\\) be two vectors with direction ratios \\(a_1\\), \\(b_1\\), \\(c_1\\) and \\(a_2\\), \\(b_2\\), \\(c_2\\) respectively. Then, <\/p>\n

\n

\\(\\vec{A}\\) = A vector along (\\vec{a}\\) = \\(a_1\\hat{i} + b_1\\hat{j} + c_1\\hat{k}\\) and,<\/p>\n

\\(\\vec{B}\\) = A vector along \\(\\vec{b}\\) = \\(a_2\\hat{i} + b_2\\hat{j} + c_2\\hat{k}\\)<\/p>\n

Let \\(\\theta\\) be the angle between \\(\\vec{a}\\) and \\(\\vec{b}\\). Then, \\(\\theta\\) is also the angle between \\(\\vec{A}\\) and \\(\\vec{B}\\)<\/p>\n

\\(\\therefore\\) cos\\(\\theta\\) = \\(\\vec{A}.\\vec{B}\\over | \\vec{A} | | \\vec{B} |\\)<\/p>\n

\\(\\implies\\) cos\\(\\theta\\) = \\((a_1\\hat{i} + b_1\\hat{j} + c_1\\hat{k}).(a_2\\hat{i} + b_2\\hat{j} + c_2\\hat{k})\\over |(a_1\\hat{i} + b_1\\hat{j} + c_1\\hat{k})||(a_2\\hat{i} + b_2\\hat{j} + c_2\\hat{k})|\\)<\/p>\n

\\(\\implies\\) cos\\(\\theta\\) = \\(a_1a_2 + b_1b_2 + c_1c_2\\over \\sqrt{{a_1}^2 + {b_1}^2 + {c_1}^2} \\sqrt{{a_2}^2 + {b_2}^2 +{c_2}^2}\\)<\/p>\n<\/blockquote>\n

Condition for Perpendicularity<\/strong> : If \\(\\vec{a}\\) and \\(\\vec{b}\\) are perpendicular, then<\/p>\n

\n

\\(a_1a_2 + b_1b_2 + c_1c_2\\) = 0<\/p>\n<\/blockquote>\n

Condition for Parallelism<\/strong> : If \\(\\vec{a}\\) and \\(\\vec{b}\\) are parallel, then<\/p>\n

\n

\\(a_1\\over a_2\\) = \\(b_1\\over b_2\\) = \\(c_1\\over c_2\\) <\/p>\n<\/blockquote>\n

Example<\/strong><\/span> : Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.<\/p>\n

Solution<\/span><\/strong> : We have,<\/p>\n

\\(\\vec{a}\\) = \\(4\\hat{i} – 3\\hat{j} + 5\\hat{k}\\) and \\(\\vec{b}\\) = \\(3\\hat{i} + 4\\hat{j} + 5\\hat{k}\\)<\/p>\n

Let \\(\\theta\\) is the angle between the given vectors. Then,<\/p>\n

cos\\(\\theta\\) = \\(\\vec{a}.\\vec{b}\\over |\\vec{a}||\\vec{b}|\\)<\/p>\n

\\(\\implies\\) cos\\(\\theta\\) = \\(12 – 12 + 25\\over \\sqrt{16 + 9 + 25} \\sqrt{16 + 9 + 25}\\) = \\(1\\over 2\\)<\/p>\n

\\(\\implies\\) \\(\\theta\\) = \\(\\pi\\over 3\\)<\/p>\n\n\n

\n
Next – Equation of a Line in Vector Form<\/a><\/div>\n<\/div>\n\n\n\n
\n
Previous – Direction Cosines and Direction Ratios of Line<\/a><\/div>\n<\/div>\n","protected":false},"excerpt":{"rendered":"

Here, we will find the formula for angle between two vectors in terms of their direction cosines and also in terms of their direction ratios. The angle between two lines is defined as the angle between two vectors parallel to them. So, the results derived for vectors will also be applicalble to lines, Let’s begin …<\/p>\n

Formula for Angle Between Two Vectors<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[33],"tags":[],"yoast_head":"\nFormula for Angle Between Two Vectors - Mathemerize<\/title>\n<meta name=\"description\" content=\"In this post you will learn formula for angle between two vectors in terms of their direction cosines and direction ratios with example.\" \/>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Formula for Angle Between Two Vectors - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"In this post you will learn formula for angle between two vectors in terms of their direction cosines and direction ratios with example.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-10-07T12:06:16+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-10-07T20:06:42+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Formula for Angle Between Two Vectors\",\"datePublished\":\"2021-10-07T12:06:16+00:00\",\"dateModified\":\"2021-10-07T20:06:42+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/\"},\"wordCount\":550,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Vectors\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/\",\"url\":\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/\",\"name\":\"Formula for Angle Between Two Vectors - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-10-07T12:06:16+00:00\",\"dateModified\":\"2021-10-07T20:06:42+00:00\",\"description\":\"In this post you will learn formula for angle between two vectors in terms of their direction cosines and direction ratios with example.\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Formula for Angle Between Two Vectors\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Formula for Angle Between Two Vectors - Mathemerize","description":"In this post you will learn formula for angle between two vectors in terms of their direction cosines and direction ratios with example.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/","og_locale":"en_US","og_type":"article","og_title":"Formula for Angle Between Two Vectors - Mathemerize","og_description":"In this post you will learn formula for angle between two vectors in terms of their direction cosines and direction ratios with example.","og_url":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/","og_site_name":"Mathemerize","article_published_time":"2021-10-07T12:06:16+00:00","article_modified_time":"2021-10-07T20:06:42+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Formula for Angle Between Two Vectors","datePublished":"2021-10-07T12:06:16+00:00","dateModified":"2021-10-07T20:06:42+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/"},"wordCount":550,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Vectors"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/","url":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/","name":"Formula for Angle Between Two Vectors - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-10-07T12:06:16+00:00","dateModified":"2021-10-07T20:06:42+00:00","description":"In this post you will learn formula for angle between two vectors in terms of their direction cosines and direction ratios with example.","breadcrumb":{"@id":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/formula-for-angle-between-two-vectors\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Formula for Angle Between Two Vectors"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6106"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=6106"}],"version-history":[{"count":9,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6106\/revisions"}],"predecessor-version":[{"id":6169,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6106\/revisions\/6169"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=6106"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=6106"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=6106"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}