{"id":6769,"date":"2021-10-21T14:13:49","date_gmt":"2021-10-21T08:43:49","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6769"},"modified":"2021-10-25T01:33:30","modified_gmt":"2021-10-24T20:03:30","slug":"how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/","title":{"rendered":"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?"},"content":{"rendered":"

Solution :<\/h2>\n

There are 4 odd digits (1, 1, 3, 3) and 4 odd places(first, third, fifth and seventh).<\/p>\n

At these places the odd digits can be arranged in \\(4!\\over 2!2!\\) = 6<\/p>\n

Then at the remaining 3 places, the remaining three digits(2, 2, 4) can be arranged in \\(3!\\over 2!\\) = 3 ways<\/p>\n

Therefore,\u00a0 The required number of numbers = 6 \\(\\times\\) 3 = 18<\/p>\n


\n

Similar Questions<\/h3>\n

How many different words can be formed by jumbling the letters in the word \u2018MISSISSIPPI\u2019 in which no two S are adjacent ?<\/a><\/p>\n

From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is<\/a><\/p>\n

There are 10 points in a plane, out of these 6 are collinear. If N is the number of triangles formed by joining these points, then<\/a><\/p>\n

A student is to answer 10 out of 13 questions in an examination such that he must choose atleast 4 from the first five questions. The number of choices available to him is<\/a><\/p>\n

The set S = {1,2,3,\u2026..,12} is to be partitioned into three sets A, B and C of equal size. Thus, \\(A\\cup B\\cup C\\) = S \\(A\\cap B\\) = \\(B\\cap C\\) = \\(A\\cap C\\) = \\(\\phi\\) The number of ways to partition S is<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

Solution : There are 4 odd digits (1, 1, 3, 3) and 4 odd places(first, third, fifth and seventh). At these places the odd digits can be arranged in \\(4!\\over 2!2!\\) = 6 Then at the remaining 3 places, the remaining three digits(2, 2, 4) can be arranged in \\(3!\\over 2!\\) = 3 ways Therefore,\u00a0 …<\/p>\n

How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[43,47],"tags":[],"yoast_head":"\nHow many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?\" \/>\n<meta property=\"og:description\" content=\"Solution : There are 4 odd digits (1, 1, 3, 3) and 4 odd places(first, third, fifth and seventh). At these places the odd digits can be arranged in (4!over 2!2!) = 6 Then at the remaining 3 places, the remaining three digits(2, 2, 4) can be arranged in (3!over 2!) = 3 ways Therefore,\u00a0 … How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places? Read More »\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-10-21T08:43:49+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-10-24T20:03:30+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?\",\"datePublished\":\"2021-10-21T08:43:49+00:00\",\"dateModified\":\"2021-10-24T20:03:30+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/\"},\"wordCount\":222,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Maths Questions\",\"Permutation & Combination Questions\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/\",\"url\":\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/\",\"name\":\"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-10-21T08:43:49+00:00\",\"dateModified\":\"2021-10-24T20:03:30+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/","og_locale":"en_US","og_type":"article","og_title":"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?","og_description":"Solution : There are 4 odd digits (1, 1, 3, 3) and 4 odd places(first, third, fifth and seventh). At these places the odd digits can be arranged in (4!over 2!2!) = 6 Then at the remaining 3 places, the remaining three digits(2, 2, 4) can be arranged in (3!over 2!) = 3 ways Therefore,\u00a0 … How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places? Read More »","og_url":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/","og_site_name":"Mathemerize","article_published_time":"2021-10-21T08:43:49+00:00","article_modified_time":"2021-10-24T20:03:30+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?","datePublished":"2021-10-21T08:43:49+00:00","dateModified":"2021-10-24T20:03:30+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/"},"wordCount":222,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Maths Questions","Permutation & Combination Questions"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/","url":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/","name":"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-10-21T08:43:49+00:00","dateModified":"2021-10-24T20:03:30+00:00","breadcrumb":{"@id":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/how-many-numbers-can-be-formed-with-the-digits-1-2-3-4-3-2-1-so-that-the-odd-digits-always-occupy-the-odd-places\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6769"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=6769"}],"version-history":[{"count":3,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6769\/revisions"}],"predecessor-version":[{"id":7359,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6769\/revisions\/7359"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=6769"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=6769"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=6769"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}