{"id":6794,"date":"2021-10-21T17:11:43","date_gmt":"2021-10-21T11:41:43","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6794"},"modified":"2021-10-24T23:54:30","modified_gmt":"2021-10-24T18:24:30","slug":"find-the-inverse-of-the-function-fx-log_ax-sqrtx21-a-1-and-assuming-it-to-be-an-onto-function","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-inverse-of-the-function-fx-log_ax-sqrtx21-a-1-and-assuming-it-to-be-an-onto-function\/","title":{"rendered":"Find the inverse of the function f(x) = \\(log_a(x + \\sqrt{(x^2+1)})\\); a > 1 and assuming it to be an onto function."},"content":{"rendered":"
Given f(x) = \\(log_a(x + \\sqrt{(x^2+1)})\\)<\/p>\n
f'(x) = \\(log_ae\\over {\\sqrt{1+x^2}}\\) > 0<\/p>\n
which is strictly increasing functions.<\/p>\n
Thus, f(x) is injective, given that f(x) is onto. Hence the given function f(x) is invertible.<\/p>\n
Interchanging x & y<\/p>\n
\\(\\implies\\)\u00a0 \\(log_a(y + \\sqrt{(y^2+1)})\\) = x<\/p>\n
\\(\\implies\\)\u00a0 \\(y + \\sqrt{(y^2+1)}\\) = \\(a^x\\) ……..(1)<\/p>\n
and\u00a0 \\(\\sqrt{(y^2+1)}\\) – y = \\(a^{-x}\\) ………..(2)<\/p>\n
From (1) and (2), we get y = \\(1\\over 2\\)(\\(a^x – a^{-x}\\)) or \\(f{-1}\\)(x) = \\(1\\over 2\\)(\\(a^x – a^{-x}\\)).<\/p>\n
If y = 2[x] + 3 & y = 3[x \u2013 2] + 5, then find [x + y] where [.] denotes greatest integer function.<\/a><\/p>\n Find the domain and range of function f(x) = \\(x-2\\over 3-x\\).<\/a><\/p>\n Find the period of the function f(x) = \\(e^{x-[x]+|cos\\pi x|+|cos2\\pi x|+ \u2026.. + |cosn\\pi x|}\\)<\/a><\/p>\n Find the domain of the function f(x) = \\(1\\over x + 2\\).<\/a><\/p>\n