{"id":6809,"date":"2021-10-21T17:54:14","date_gmt":"2021-10-21T12:24:14","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6809"},"modified":"2021-11-01T19:32:30","modified_gmt":"2021-11-01T14:02:30","slug":"evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/","title":{"rendered":"Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)"},"content":{"rendered":"

Solution :<\/h2>\n

I = \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)<\/p>\n

= \\(\\int\\) \\(cos^4xdx\\over {sin^6x{(1 + cot^5x)^{3\\over 5}}}\\) = \\(\\int\\) \\(cot^4xcosec^2xdx\\over {{(1 + cot^5x)^{3\\over 5}}}\\)<\/p>\n

Put \\(1+cot^5x\\) = t<\/p>\n

\\(5cot^4xcosec^2x\\)dx = -dt<\/p>\n

= -\\(1\\over 5\\) \\(\\int\\) \\(dt\\over {t^{3\/5}}\\) = -\\(1\\over 2\\) \\(t^{2\/5}\\) + C<\/p>\n

= -\\(1\\over 2\\) \\({(1+cot^5x)}^{2\/5}\\) + C<\/p>\n


\n

Similar Questions<\/h3>\n

What is the integration of x tan inverse x dx ?<\/a><\/p>\n

Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.<\/a><\/p>\n

What is the integration of tan inverse root x ?<\/a><\/p>\n

Evaluate : \\(\\int\\) \\(dx\\over {3sinx + 4cosx}\\)<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

Solution : I = \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\) = \\(\\int\\) \\(cos^4xdx\\over {sin^6x{(1 + cot^5x)^{3\\over 5}}}\\) = \\(\\int\\) \\(cot^4xcosec^2xdx\\over {{(1 + cot^5x)^{3\\over 5}}}\\) Put \\(1+cot^5x\\) = t \\(5cot^4xcosec^2x\\)dx = -dt = -\\(1\\over 5\\) \\(\\int\\) \\(dt\\over {t^{3\/5}}\\) = -\\(1\\over 2\\) \\(t^{2\/5}\\) + C = -\\(1\\over 2\\) \\({(1+cot^5x)}^{2\/5}\\) + C Similar Questions What is the integration …<\/p>\n

Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[52,43],"tags":[],"yoast_head":"\nEvaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)\" \/>\n<meta property=\"og:description\" content=\"Solution : I = (int) (cos^4xdxover {sin^3x{(sin^5x + cos^5x)^{3over 5}}}) = (int) (cos^4xdxover {sin^6x{(1 + cot^5x)^{3over 5}}}) = (int) (cot^4xcosec^2xdxover {{(1 + cot^5x)^{3over 5}}}) Put (1+cot^5x) = t (5cot^4xcosec^2x)dx = -dt = -(1over 5) (int) (dtover {t^{3\/5}}) = -(1over 2) (t^{2\/5}) + C = -(1over 2) ({(1+cot^5x)}^{2\/5}) + C Similar Questions What is the integration … Evaluate : (int) (cos^4xdxover {sin^3x{(sin^5x + cos^5x)^{3over 5}}}) Read More »\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-10-21T12:24:14+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-01T14:02:30+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"1 minute\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Evaluate : \\\\(\\\\int\\\\) \\\\(cos^4xdx\\\\over {sin^3x{(sin^5x + cos^5x)^{3\\\\over 5}}}\\\\)\",\"datePublished\":\"2021-10-21T12:24:14+00:00\",\"dateModified\":\"2021-11-01T14:02:30+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/\"},\"wordCount\":109,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Integration Questions\",\"Maths Questions\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/\",\"url\":\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/\",\"name\":\"Evaluate : \\\\(\\\\int\\\\) \\\\(cos^4xdx\\\\over {sin^3x{(sin^5x + cos^5x)^{3\\\\over 5}}}\\\\)\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-10-21T12:24:14+00:00\",\"dateModified\":\"2021-11-01T14:02:30+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Evaluate : \\\\(\\\\int\\\\) \\\\(cos^4xdx\\\\over {sin^3x{(sin^5x + cos^5x)^{3\\\\over 5}}}\\\\)\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/","og_locale":"en_US","og_type":"article","og_title":"Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)","og_description":"Solution : I = (int) (cos^4xdxover {sin^3x{(sin^5x + cos^5x)^{3over 5}}}) = (int) (cos^4xdxover {sin^6x{(1 + cot^5x)^{3over 5}}}) = (int) (cot^4xcosec^2xdxover {{(1 + cot^5x)^{3over 5}}}) Put (1+cot^5x) = t (5cot^4xcosec^2x)dx = -dt = -(1over 5) (int) (dtover {t^{3\/5}}) = -(1over 2) (t^{2\/5}) + C = -(1over 2) ({(1+cot^5x)}^{2\/5}) + C Similar Questions What is the integration … Evaluate : (int) (cos^4xdxover {sin^3x{(sin^5x + cos^5x)^{3over 5}}}) Read More »","og_url":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/","og_site_name":"Mathemerize","article_published_time":"2021-10-21T12:24:14+00:00","article_modified_time":"2021-11-01T14:02:30+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"1 minute"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)","datePublished":"2021-10-21T12:24:14+00:00","dateModified":"2021-11-01T14:02:30+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/"},"wordCount":109,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Integration Questions","Maths Questions"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/","url":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/","name":"Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-10-21T12:24:14+00:00","dateModified":"2021-11-01T14:02:30+00:00","breadcrumb":{"@id":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)"}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6809"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=6809"}],"version-history":[{"count":2,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6809\/revisions"}],"predecessor-version":[{"id":7679,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6809\/revisions\/7679"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=6809"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=6809"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=6809"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}