{"id":6809,"date":"2021-10-21T17:54:14","date_gmt":"2021-10-21T12:24:14","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6809"},"modified":"2021-11-01T19:32:30","modified_gmt":"2021-11-01T14:02:30","slug":"evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/evaluate-int-cos4xdxover-sin3xsin5x-cos5x3over-5\/","title":{"rendered":"Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)"},"content":{"rendered":"
I = \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)<\/p>\n
= \\(\\int\\) \\(cos^4xdx\\over {sin^6x{(1 + cot^5x)^{3\\over 5}}}\\) = \\(\\int\\) \\(cot^4xcosec^2xdx\\over {{(1 + cot^5x)^{3\\over 5}}}\\)<\/p>\n
Put \\(1+cot^5x\\) = t<\/p>\n
\\(5cot^4xcosec^2x\\)dx = -dt<\/p>\n
= -\\(1\\over 5\\) \\(\\int\\) \\(dt\\over {t^{3\/5}}\\) = -\\(1\\over 2\\) \\(t^{2\/5}\\) + C<\/p>\n
= -\\(1\\over 2\\) \\({(1+cot^5x)}^{2\/5}\\) + C<\/p>\n
What is the integration of x tan inverse x dx ?<\/a><\/p>\n Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.<\/a><\/p>\n What is the integration of tan inverse root x ?<\/a><\/p>\n