{"id":6812,"date":"2021-10-21T17:56:07","date_gmt":"2021-10-21T12:26:07","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6812"},"modified":"2021-11-01T19:32:40","modified_gmt":"2021-11-01T14:02:40","slug":"prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/","title":{"rendered":"Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2."},"content":{"rendered":"

Solution :<\/h2>\n

Let I = \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx\u00a0 \u00a0 …….(i)<\/p>\n

then I = \\(\\int_{0}^{\\pi\/2}\\) \\(log(sin({\\pi\\over 2}-x))\\)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx\u00a0 \u00a0 \u00a0…….(ii)<\/p>\n

Adding (i) and (ii), we get<\/p>\n

2I = \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx + \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = \\(\\int_{0}^{\\pi\/2}\\) (log(sinx)dx + log(cosx))<\/p>\n

\\(\\implies\\) \\(\\int_{0}^{\\pi\/2}\\) log(sinxcosx)dx = \\(\\int_{0}^{\\pi\/2}\\) \\(log({2sinxcosx\\over 2})\\)dx<\/p>\n

= \\(\\int_{0}^{\\pi\/2}\\) \\(log({sin2x\\over 2})\\)dx = \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx – \\(\\int_{0}^{\\pi\/2}\\) log(2)dx<\/p>\n

= \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx – (log 2)\\({(x)}^{\\pi\/2}_{0}\\)<\/p>\n

\\(\\implies\\)\u00a0 2I = \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx – \\(\\pi\\over 2\\)log 2\u00a0 \u00a0…(iii)<\/p>\n

Let \\(I_1\\) = \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx,\u00a0 putting 2x = t, we get<\/p>\n

\\(I_1\\) = \\(\\int_{0}^{\\pi}\\) log(sint)\\(dt\\over 2\\) = \\(1\\over 2\\) \\(\\int_{0}^{\\pi}\\) log(sint)dt = \\(1\\over 2\\) 2\\(\\int_{0}^{\\pi\/2}\\) log(sint)dt<\/p>\n

\\(I_1\\) = \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx<\/p>\n

\\(\\therefore\\)\u00a0 (iii) becomes; 2I = I – \\(\\pi\\over 2\\)log 2<\/p>\n

Hence\u00a0 \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = – \\(\\pi\\over 2\\)log 2<\/p>\n


\n

Similar Questions<\/h3>\n

What is the integration of x tan inverse x dx ?<\/a><\/p>\n

What is the integration of tan inverse root x ?<\/a><\/p>\n

Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)<\/a><\/p>\n

Evaluate : \\(\\int\\) \\(dx\\over {3sinx + 4cosx}\\)<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

Solution : Let I = \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx\u00a0 \u00a0 …….(i) then I = \\(\\int_{0}^{\\pi\/2}\\) \\(log(sin({\\pi\\over 2}-x))\\)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx\u00a0 \u00a0 \u00a0…….(ii) Adding (i) and (ii), we get 2I = \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx + \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = \\(\\int_{0}^{\\pi\/2}\\) (log(sinx)dx + log(cosx)) \\(\\implies\\) \\(\\int_{0}^{\\pi\/2}\\) log(sinxcosx)dx = \\(\\int_{0}^{\\pi\/2}\\) \\(log({2sinxcosx\\over 2})\\)dx = \\(\\int_{0}^{\\pi\/2}\\) \\(log({sin2x\\over 2})\\)dx = \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx – \\(\\int_{0}^{\\pi\/2}\\) log(2)dx …<\/p>\n

Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[52,43],"tags":[],"yoast_head":"\nProve that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.\" \/>\n<meta property=\"og:description\" content=\"Solution : Let I = (int_{0}^{pi\/2}) log(sinx)dx\u00a0 \u00a0 …….(i) then I = (int_{0}^{pi\/2}) (log(sin({piover 2}-x)))dx = (int_{0}^{pi\/2}) log(cosx)dx\u00a0 \u00a0 \u00a0…….(ii) Adding (i) and (ii), we get 2I = (int_{0}^{pi\/2}) log(sinx)dx + (int_{0}^{pi\/2}) log(cosx)dx = (int_{0}^{pi\/2}) (log(sinx)dx + log(cosx)) (implies) (int_{0}^{pi\/2}) log(sinxcosx)dx = (int_{0}^{pi\/2}) (log({2sinxcosxover 2}))dx = (int_{0}^{pi\/2}) (log({sin2xover 2}))dx = (int_{0}^{pi\/2}) log(sin2x)dx – (int_{0}^{pi\/2}) log(2)dx … Prove that (int_{0}^{pi\/2}) log(sinx)dx = (int_{0}^{pi\/2}) log(cosx)dx = -(piover 2)log 2. Read More »\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-10-21T12:26:07+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-01T14:02:40+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"1 minute\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Prove that \\\\(\\\\int_{0}^{\\\\pi\/2}\\\\) log(sinx)dx = \\\\(\\\\int_{0}^{\\\\pi\/2}\\\\) log(cosx)dx = -\\\\(\\\\pi\\\\over 2\\\\)log 2.\",\"datePublished\":\"2021-10-21T12:26:07+00:00\",\"dateModified\":\"2021-11-01T14:02:40+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/\"},\"wordCount\":214,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Integration Questions\",\"Maths Questions\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/\",\"url\":\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/\",\"name\":\"Prove that \\\\(\\\\int_{0}^{\\\\pi\/2}\\\\) log(sinx)dx = \\\\(\\\\int_{0}^{\\\\pi\/2}\\\\) log(cosx)dx = -\\\\(\\\\pi\\\\over 2\\\\)log 2.\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-10-21T12:26:07+00:00\",\"dateModified\":\"2021-11-01T14:02:40+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Prove that \\\\(\\\\int_{0}^{\\\\pi\/2}\\\\) log(sinx)dx = \\\\(\\\\int_{0}^{\\\\pi\/2}\\\\) log(cosx)dx = -\\\\(\\\\pi\\\\over 2\\\\)log 2.\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/","og_locale":"en_US","og_type":"article","og_title":"Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.","og_description":"Solution : Let I = (int_{0}^{pi\/2}) log(sinx)dx\u00a0 \u00a0 …….(i) then I = (int_{0}^{pi\/2}) (log(sin({piover 2}-x)))dx = (int_{0}^{pi\/2}) log(cosx)dx\u00a0 \u00a0 \u00a0…….(ii) Adding (i) and (ii), we get 2I = (int_{0}^{pi\/2}) log(sinx)dx + (int_{0}^{pi\/2}) log(cosx)dx = (int_{0}^{pi\/2}) (log(sinx)dx + log(cosx)) (implies) (int_{0}^{pi\/2}) log(sinxcosx)dx = (int_{0}^{pi\/2}) (log({2sinxcosxover 2}))dx = (int_{0}^{pi\/2}) (log({sin2xover 2}))dx = (int_{0}^{pi\/2}) log(sin2x)dx – (int_{0}^{pi\/2}) log(2)dx … Prove that (int_{0}^{pi\/2}) log(sinx)dx = (int_{0}^{pi\/2}) log(cosx)dx = -(piover 2)log 2. Read More »","og_url":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/","og_site_name":"Mathemerize","article_published_time":"2021-10-21T12:26:07+00:00","article_modified_time":"2021-11-01T14:02:40+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"1 minute"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.","datePublished":"2021-10-21T12:26:07+00:00","dateModified":"2021-11-01T14:02:40+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/"},"wordCount":214,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Integration Questions","Maths Questions"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/","url":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/","name":"Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-10-21T12:26:07+00:00","dateModified":"2021-11-01T14:02:40+00:00","breadcrumb":{"@id":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2."}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6812"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=6812"}],"version-history":[{"count":4,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6812\/revisions"}],"predecessor-version":[{"id":7680,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/6812\/revisions\/7680"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=6812"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=6812"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=6812"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}