{"id":6812,"date":"2021-10-21T17:56:07","date_gmt":"2021-10-21T12:26:07","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6812"},"modified":"2021-11-01T19:32:40","modified_gmt":"2021-11-01T14:02:40","slug":"prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-int_0pi-2-logsinxdx-int_0pi-2-logcosxdx-piover-2log-2\/","title":{"rendered":"Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2."},"content":{"rendered":"
Let I = \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx\u00a0 \u00a0 …….(i)<\/p>\n
then I = \\(\\int_{0}^{\\pi\/2}\\) \\(log(sin({\\pi\\over 2}-x))\\)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx\u00a0 \u00a0 \u00a0…….(ii)<\/p>\n
Adding (i) and (ii), we get<\/p>\n
2I = \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx + \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = \\(\\int_{0}^{\\pi\/2}\\) (log(sinx)dx + log(cosx))<\/p>\n
\\(\\implies\\) \\(\\int_{0}^{\\pi\/2}\\) log(sinxcosx)dx = \\(\\int_{0}^{\\pi\/2}\\) \\(log({2sinxcosx\\over 2})\\)dx<\/p>\n
= \\(\\int_{0}^{\\pi\/2}\\) \\(log({sin2x\\over 2})\\)dx = \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx – \\(\\int_{0}^{\\pi\/2}\\) log(2)dx<\/p>\n
= \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx – (log 2)\\({(x)}^{\\pi\/2}_{0}\\)<\/p>\n
\\(\\implies\\)\u00a0 2I = \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx – \\(\\pi\\over 2\\)log 2\u00a0 \u00a0…(iii)<\/p>\n
Let \\(I_1\\) = \\(\\int_{0}^{\\pi\/2}\\) log(sin2x)dx,\u00a0 putting 2x = t, we get<\/p>\n
\\(I_1\\) = \\(\\int_{0}^{\\pi}\\) log(sint)\\(dt\\over 2\\) = \\(1\\over 2\\) \\(\\int_{0}^{\\pi}\\) log(sint)dt = \\(1\\over 2\\) 2\\(\\int_{0}^{\\pi\/2}\\) log(sint)dt<\/p>\n
\\(I_1\\) = \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx<\/p>\n
\\(\\therefore\\)\u00a0 (iii) becomes; 2I = I – \\(\\pi\\over 2\\)log 2<\/p>\n
Hence\u00a0 \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = – \\(\\pi\\over 2\\)log 2<\/p>\n
What is the integration of x tan inverse x dx ?<\/a><\/p>\n What is the integration of tan inverse root x ?<\/a><\/p>\n Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)<\/a><\/p>\n