{"id":6817,"date":"2021-10-21T19:05:58","date_gmt":"2021-10-21T13:35:58","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6817"},"modified":"2021-10-25T00:23:26","modified_gmt":"2021-10-24T18:53:26","slug":"prove-that-cos-112over-13-sin-13over-5-sin-156over-65","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-cos-112over-13-sin-13over-5-sin-156over-65\/","title":{"rendered":"Prove that : \\(cos^{-1}{12\\over 13}\\) + \\(sin^{-1}{3\\over 5}\\) = \\(sin^{-1}{56\\over 65}\\)"},"content":{"rendered":"
We have, L.H.S. = \\(cos^{-1}{12\\over 13}\\) + \\(sin^{-1}{3\\over 5}\\) = \\(tan^{-1}{5\\over 12}\\) + \\(tan^{-1}{3\\over 4}\\)<\/p>\n
\\(\\because\\) [ \\(cos^{-1}{12\\over 13}\\) = \\(tan^{-1}{5\\over 12}\\) & \\(sin^{-1}{3\\over 5}\\) = \\(tan^{-1}{3\\over 4}\\) ]<\/p>\n
L.H.S. = \\(tan^{-1}({{{5\\over 12} + {3\\over 4}}\\over {1 – {5\\over 12}.{3\\over 4}}})\\) = \\(tan^{-1}{56\\over 33}\\)<\/p>\n
R.H.S. = \\(sin^{-1}{56\\over 65}\\) = \\(tan^{-1}{56\\over 33}\\)<\/p>\n
L.H.S = R.H.S.\u00a0 Hence Proved.<\/p>\n
Solve the equation : 2\\(tan^{-1}({2x+1})\\) = \\(cos^{-1}x\\)<\/a><\/p>\n Prove that : \\(sin^{-1}{12\\over 13}\\) + \\(cot^{-1}{4\\over 3}\\) + \\(tan^{-1}{63\\over 16}\\) = \\(\\pi\\)<\/a><\/p>\n Evaluate \\(sin^{-1}(sin10)\\)<\/a><\/p>\n The value of \\(tan^{-1}(1)\\) + \\(cos^{-1}({-1\\over 2})\\) + \\(sin^{-1}({-1\\over 2})\\) is equal to<\/a><\/p>\n