{"id":6819,"date":"2021-10-21T19:08:05","date_gmt":"2021-10-21T13:38:05","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6819"},"modified":"2021-10-25T00:23:27","modified_gmt":"2021-10-24T18:53:27","slug":"evaluate-sin-1sin10","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/evaluate-sin-1sin10\/","title":{"rendered":"Evaluate \\(sin^{-1}(sin10)\\)"},"content":{"rendered":"
We know that \\(sin^{-1}(sinx)\\) = x, if \\(-\\pi\\over 2\\) \\(\\le\\) x \\(\\le\\) \\(\\pi\\over 2\\)<\/p>\n
Here, x = 10 radians which does not lie between -\\(\\pi\\over 2\\) and \\(\\pi\\over 2\\)<\/p>\n
But, \\(3\\pi\\) – x i.e. \\(3\\pi\\) – 10 lie between -\\(\\pi\\over 2\\) and \\(\\pi\\over 2\\)<\/p>\n
Also, sin(\\(3\\pi\\) – 10) = sin 10<\/p>\n
\\(\\therefore\\)\u00a0 \\(sin^{-1}(sin10)\\) = \\(sin^{-1}(sin(3\\pi – 10)\\) = (\\(3\\pi\\) – 10)<\/p>\n
Solve the equation : 2\\(tan^{-1}({2x+1})\\) = \\(cos^{-1}x\\)<\/a><\/p>\n Prove that : \\(sin^{-1}{12\\over 13}\\) + \\(cot^{-1}{4\\over 3}\\) + \\(tan^{-1}{63\\over 16}\\) = \\(\\pi\\)<\/a><\/p>\n The value of \\(tan^{-1}(1)\\) + \\(cos^{-1}({-1\\over 2})\\) + \\(sin^{-1}({-1\\over 2})\\) is equal to<\/a><\/p>\n Prove that : \\(cos^{-1}{12\\over 13}\\) + \\(sin^{-1}{3\\over 5}\\) = \\(sin^{-1}{56\\over 65}\\)<\/a><\/p>\n