{"id":6821,"date":"2021-10-21T19:12:07","date_gmt":"2021-10-21T13:42:07","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6821"},"modified":"2021-10-25T00:23:30","modified_gmt":"2021-10-24T18:53:30","slug":"prove-that-sin-112over-13-cot-14over-3-tan-163over-16-pi","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-sin-112over-13-cot-14over-3-tan-163over-16-pi\/","title":{"rendered":"Prove that : \\(sin^{-1}{12\\over 13}\\) + \\(cot^{-1}{4\\over 3}\\) + \\(tan^{-1}{63\\over 16}\\) = \\(\\pi\\)"},"content":{"rendered":"
We have, \\(sin^{-1}{12\\over 13}\\) + \\(cot^{-1}{4\\over 3}\\) + \\(tan^{-1}{63\\over 16}\\)<\/p>\n
= \\(tan^{-1}{12\\over 5}\\) + \\(tan^{-1}{3\\over 4}\\) + \\(tan^{-1}{63\\over 16}\\)<\/p>\n
= \\(\\pi\\) + \\(tan^{-1}({{{12\\over 5} + {3\\over 4}}\\over {1 – {12\\over 5} \\times {3\\over 4}}})\\) + \\(tan^{-1}{63\\over 16}\\)<\/p>\n
= \\(\\pi\\) + \\(tan^{-1}{63\\over (-16)}\\) + \\(tan^{-1}{63\\over 16}\\)<\/p>\n
= \\(\\pi\\) – \\(tan^{-1}{63\\over 16}\\) + \\(tan^{-1}{63\\over 16}\\)<\/p>\n
= \\(\\pi\\)<\/p>\n
Solve the equation : 2\\(tan^{-1}({2x+1})\\) = \\(cos^{-1}x\\)<\/a><\/p>\n The value of \\(tan^{-1}(1)\\) + \\(cos^{-1}({-1\\over 2})\\) + \\(sin^{-1}({-1\\over 2})\\) is equal to<\/a><\/p>\n Evaluate \\(sin^{-1}(sin10)\\)<\/a><\/p>\n Prove that : \\(cos^{-1}{12\\over 13}\\) + \\(sin^{-1}{3\\over 5}\\) = \\(sin^{-1}{56\\over 65}\\)<\/a><\/p>\n