{"id":6830,"date":"2021-10-21T19:28:05","date_gmt":"2021-10-21T13:58:05","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6830"},"modified":"2021-10-25T00:29:47","modified_gmt":"2021-10-24T18:59:47","slug":"evaluate-displaystylelim_x-to-0-xln12tanxover-1-cosx","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/evaluate-displaystylelim_x-to-0-xln12tanxover-1-cosx\/","title":{"rendered":"Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(xln(1+2tanx)\\over 1-cosx\\)"},"content":{"rendered":"
\\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(xln(1+2tanx)\\over 1-cosx\\)<\/p>\n
= \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(xln(1+2tanx)\\over {1-cosx\\over x^2}.x^2\\).\\(2tanx\\over 2tanx\\)<\/p>\n
= 4<\/p>\n
Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(x^3 cotx\\over {1-cosx}\\)<\/a><\/p>\n Evaluate : \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) \\(({7x^2+1\\over 5x^2-1})^{x^5\\over {1-x^3}}\\)<\/a><\/p>\n Evaluate the limit : \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) \\(x^2 + x + 1\\over {3x^2 + 2x \u2013 5}\\)<\/a><\/p>\n Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\((2+x)sin(2+x)-2sin2\\over x\\)<\/a><\/p>\n