{"id":6832,"date":"2021-10-21T19:32:39","date_gmt":"2021-10-21T14:02:39","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6832"},"modified":"2021-10-25T00:29:42","modified_gmt":"2021-10-24T18:59:42","slug":"evaluate-displaystylelim_x-to-infty-7x21over-5x2-1x5over-1-x3","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/evaluate-displaystylelim_x-to-infty-7x21over-5x2-1x5over-1-x3\/","title":{"rendered":"Evaluate : \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) \\(({7x^2+1\\over 5x^2-1})^{x^5\\over {1-x^3}}\\)"},"content":{"rendered":"
Here f(x) = \\({7x^2+1\\over 5x^2-1}\\)<\/p>\n
\\(\\phi\\)(x) = \\({x^5\\over {1-x^3}}\\) = \\(x^2x^3\\over 1-x^3\\) = \\(x^2\\over {1\\over x^3}-1\\)<\/p>\n
\\(\\therefore\\) \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) f(x) = \\(7\\over 5\\) &\u00a0 \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) \\(\\phi\\)(x) \\(\\rightarrow\\) – \\(\\infty\\)<\/p>\n
\\(\\implies\\) \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) \\((f(x))^{\\phi (x)}\\) = \\(({7\\over 5})^{-\\infty}\\) = 0<\/p>\n
Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(x^3 cotx\\over {1-cosx}\\)<\/a><\/p>\n Evaluate the limit : \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) \\(x^2 + x + 1\\over {3x^2 + 2x \u2013 5}\\)<\/a><\/p>\n Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(xln(1+2tanx)\\over 1-cosx\\)<\/a><\/p>\n Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\((2+x)sin(2+x)-2sin2\\over x\\)<\/a><\/p>\n