{"id":6834,"date":"2021-10-21T19:35:53","date_gmt":"2021-10-21T14:05:53","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6834"},"modified":"2021-10-25T00:48:50","modified_gmt":"2021-10-24T19:18:50","slug":"if-log_e-x-log_e-y-a-log_e-y-log_e-z-b-log_e-z-log_e-x-c-then-find-the-value-of-xover-yb-c-times-yover-zc-a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/if-log_e-x-log_e-y-a-log_e-y-log_e-z-b-log_e-z-log_e-x-c-then-find-the-value-of-xover-yb-c-times-yover-zc-a\/","title":{"rendered":"If \\(log_e x\\) – \\(log_e y\\) = a, \\(log_e y\\) – \\(log_e z\\) = b & \\(log_e z\\) – \\(log_e x\\) = c, then find the value of \\(({x\\over y})^{b-c}\\) \\(\\times\\) \\(({y\\over z})^{c-a}\\) \\(\\times\\) \\(({z\\over x})^{a-b}\\)."},"content":{"rendered":"
\\(log_e x\\) – \\(log_e y\\) = a \\(\\implies\\) \\(log_e {x\\over y}\\) = a \\(\\implies\\) \\(x\\over y\\) = \\(e^a\\)<\/p>\n
\\(log_e y\\) – \\(log_e z\\) = b \\(\\implies\\) \\(log_e {y\\over z}\\) = b \\(\\implies\\) \\(y\\over z\\) = \\(e^b\\)<\/p>\n
\\(log_e z\\) – \\(log_e x\\) = c \\(\\implies\\) \\(log_e {z\\over x}\\) = c \\(\\implies\\) \\(z\\over x\\) = \\(e^c\\)<\/p>\n
\\(\\therefore\\)\u00a0 \\((e^a)^{b-c}\\) \\(\\times\\) \\((e^b)^{c-a}\\) \\(\\times\\) \\((e^c)^{a-b}\\)<\/p>\n
= \\(e^{a(b-c)+b(c-a)+c(a-b)}\\) = \\(e^0\\) = 1<\/p>\n
Solve for x : \\(2^{x + 2}\\) > \\(({1\\over 4})^{1\\over x}\\).<\/a><\/p>\n Evaluate the given log : \\(81^{l\\over {log_5 3}}\\) + \\(27^{log_9 36}\\) + \\(3^{4\\over {log_7 9}}\\).<\/a><\/p>\n If \\(log_a x\\) = p and \\(log_b {x^2}\\) = q then \\(log_x \\sqrt{ab}\\) is equal to<\/a><\/p>\n