\\(log_e x\\) – \\(log_e y\\) = a \\(\\implies\\) \\(log_e {x\\over y}\\) = a \\(\\implies\\) \\(x\\over y\\) = \\(e^a\\)<\/p>\n
\\(log_e y\\) – \\(log_e z\\) = b \\(\\implies\\) \\(log_e {y\\over z}\\) = b \\(\\implies\\) \\(y\\over z\\) = \\(e^b\\)<\/p>\n
\\(log_e z\\) – \\(log_e x\\) = c \\(\\implies\\) \\(log_e {z\\over x}\\) = c \\(\\implies\\) \\(z\\over x\\) = \\(e^c\\)<\/p>\n
\\(\\therefore\\)\u00a0 \\((e^a)^{b-c}\\) \\(\\times\\) \\((e^b)^{c-a}\\) \\(\\times\\) \\((e^c)^{a-b}\\)<\/p>\n
= \\(e^{a(b-c)+b(c-a)+c(a-b)}\\) = \\(e^0\\) = 1<\/p>\n
Solve for x : \\(2^{x + 2}\\) > \\(({1\\over 4})^{1\\over x}\\).<\/a><\/p>\n
If \\(log_a x\\) = p and \\(log_b {x^2}\\) = q then \\(log_x \\sqrt{ab}\\) is equal to<\/a><\/p>\n
If \\(log_e x\\) – \\(log_e y\\) = a, \\(log_e y\\) – \\(log_e z\\) = b & \\(log_e z\\) – \\(log_e x\\) = c, then find the value of \\(({x\\over y})^{b-c}\\) \\(\\times\\) \\(({y\\over z})^{c-a}\\) \\(\\times\\) \\(({z\\over x})^{a-b}\\).<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[55,43],"tags":[],"yoast_head":"\n