{"id":6836,"date":"2021-10-21T19:37:33","date_gmt":"2021-10-21T14:07:33","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6836"},"modified":"2021-10-25T00:48:52","modified_gmt":"2021-10-24T19:18:52","slug":"if-log_a-x-p-and-log_b-x2-q-then-log_x-sqrtab-is-equal-to","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/if-log_a-x-p-and-log_b-x2-q-then-log_x-sqrtab-is-equal-to\/","title":{"rendered":"If \\(log_a x\\) = p and \\(log_b {x^2}\\) = q then \\(log_x \\sqrt{ab}\\) is equal to"},"content":{"rendered":"
\\(log_a x\\) = p \\(\\implies\\) \\(a^p\\) = x \\(\\implies\\) a = \\(x^{1\/p}\\)<\/p>\n
Similarly\u00a0 \\(b^q\\) = \\(x^2\\) \\(\\implies\\) b = \\(x^{2\/q}\\)<\/p>\n
Now, \\(log_x \\sqrt{ab}\\) = \\(log_x \\sqrt{x^{1\/p}x^{2\/q}}\\) = \\(log_x x^{({1\\over p}+{2\\over q}){1\\over 2}}\\) = \\(1\\over {2p}\\) + \\(1\\over q\\).<\/p>\n
Solve for x : \\(2^{x + 2}\\) > \\(({1\\over 4})^{1\\over x}\\).<\/a><\/p>\n Evaluate the given log : \\(81^{l\\over {log_5 3}}\\) + \\(27^{log_9 36}\\) + \\(3^{4\\over {log_7 9}}\\).<\/a><\/p>\n Find the value of \\(2log{2\\over 5}\\) + \\(3log{25\\over 8}\\) \u2013 \\(log{625\\over 128}\\).<\/a><\/p>\n