{"id":6838,"date":"2021-10-21T19:40:05","date_gmt":"2021-10-21T14:10:05","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6838"},"modified":"2021-10-22T17:04:36","modified_gmt":"2021-10-22T11:34:36","slug":"solve-for-x-2x2-1over-41-x","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/solve-for-x-2x2-1over-41-x\/","title":{"rendered":"Solve for x : \\(2^{x+2}\\) > \\(({1\\over 4})^{1\/x}\\)"},"content":{"rendered":"
We have \\(2^{x+2}\\) > \\(2^{-2\/x}\\)<\/p>\n
Since the base 2 > 1, we have x + 2 > \\(-2\\over x\\)<\/p>\n
(the sign of inequality is retained)<\/p>\n
Now, x + 2 + \\(-2\\over x\\) > 0 \\(\\implies\\) \\({x^2 + 2x + 2}\\over x\\) > 0<\/p>\n
\\(\\implies\\) \\(({x+1})^2 + 1\\over x\\) > 0<\/p>\n
\\(\\implies\\) x \\(\\in\\) (0,\\(\\infty\\)).<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : We have \\(2^{x+2}\\) > \\(2^{-2\/x}\\) Since the base 2 > 1, we have x + 2 > \\(-2\\over x\\) (the sign of inequality is retained) Now, x + 2 + \\(-2\\over x\\) > 0 \\(\\implies\\) \\({x^2 + 2x + 2}\\over x\\) > 0 \\(\\implies\\) \\(({x+1})^2 + 1\\over x\\) > 0 \\(\\implies\\) x \\(\\in\\) …<\/p>\n