{"id":6848,"date":"2021-10-21T19:53:39","date_gmt":"2021-10-21T14:23:39","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6848"},"modified":"2021-10-22T17:32:32","modified_gmt":"2021-10-22T12:02:32","slug":"if-fx-y-fx-fy-2xy-1-for-all-x-and-y-if-f0-exists-and-f0-sinalpha-then-find-ff0","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/if-fx-y-fx-fy-2xy-1-for-all-x-and-y-if-f0-exists-and-f0-sinalpha-then-find-ff0\/","title":{"rendered":"If f(x + y) = f(x) + f(y) – 2xy – 1 for all x and y. If f'(0) exists and f'(0) = -sin\\(\\alpha\\), then find f{f'(0)}."},"content":{"rendered":"
f'(x) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(x+h) – f(x)\\over h\\)<\/p>\n
= \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\({f(x)+f(h)-2xh-1} – f(x)\\over h\\)<\/p>\n
= \\(\\displaystyle{\\lim_{h \\to 0}}\\) -2x + \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(h)-1\\over h\\) = -2x + \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(h) – f(0)\\over h\\)<\/p>\n
[Putting x = 0 = y in the given relation we find f(0) = f(0) + f(0) + 0 – 1 \\(\\implies\\) f(0) = 1]<\/p>\n
\\(\\therefore\\) f'(x) = -2x + f'(0) = -2x – sin\\(\\alpha\\)<\/p>\n
\\(\\implies\\) f(x) = -\\(x^2\\) – (sin\\(\\alpha\\)).x + c<\/p>\n
f(0) = – 0 – 0 + c \\(\\implies\\) c = 1<\/p>\n
\\(\\therefore\\) f(x) = -\\(x^2\\) – (sin\\(\\alpha\\)).x + 1<\/p>\n
so, f{f'(0)} = f(-sin\\(\\alpha\\)) = -\\(sin^2\\alpha\\) + \\(sin^2\\alpha\\) + 1 = 1<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : f'(x) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(x+h) – f(x)\\over h\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\({f(x)+f(h)-2xh-1} – f(x)\\over h\\) = \\(\\displaystyle{\\lim_{h \\to 0}}\\) -2x + \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(h)-1\\over h\\) = -2x + \\(\\displaystyle{\\lim_{h \\to 0}}\\) \\(f(h) – f(0)\\over h\\) [Putting x = 0 = y in the given relation we find f(0) = f(0) …<\/p>\n