{"id":6890,"date":"2021-10-21T22:06:32","date_gmt":"2021-10-21T16:36:32","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6890"},"modified":"2021-10-25T09:56:39","modified_gmt":"2021-10-25T04:26:39","slug":"solve-6-10cosx-3sin2x","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/solve-6-10cosx-3sin2x\/","title":{"rendered":"Solve : 6 – 10cosx = 3\\(sin^2x\\)"},"content":{"rendered":"
we have, 6 – 10cosx = 3\\(sin^2x\\)<\/p>\n
\\(\\therefore\\)\u00a0 6 – 10cosx = 3 – 3\\(cos^2x\\)<\/p>\n
\\(\\implies\\)\u00a0 3\\(cos^2x\\) – 10cosx + 3 = 0<\/p>\n
\\(\\implies\\)\u00a0 (3cosx-1)(cosx-3) = 0\u00a0 \\(\\implies\\)\u00a0 cosx = \\(1\\over 3\\) or cosx = 3<\/p>\n
Since cosx = 3 is not possible as -1 \\(\\le\\) cosx \\(\\le\\) 1<\/p>\n
\\(\\therefore\\)\u00a0 cosx = \\(1\\over 3\\) = cos(\\(cos^{-1}{1\\over 3}\\))\u00a0 \\(\\implies\\)\u00a0 x = 2n\\(\\pi\\) \\(\\pm\\) \\(cos^{-1}{1\\over 3}\\)<\/p>\n
If \\({1\\over 6}sin\\theta\\), \\(cos\\theta\\) and \\(tan\\theta\\) are in G.P. then the general solution for \\(\\theta\\) is<\/a><\/p>\n Solve : cos3x + sin2x \u2013 sin4x = 0<\/a><\/p>\n Find the number of solutions of tanx + secx = 2cosx in [0, \\(2\\pi\\)].<\/a><\/p>\n