{"id":6895,"date":"2021-10-21T22:14:35","date_gmt":"2021-10-21T16:44:35","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6895"},"modified":"2021-10-25T10:00:56","modified_gmt":"2021-10-25T04:30:56","slug":"prove-that-2cos2a1over-2cos2a-1-tan60circ-atan60circ-a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-2cos2a1over-2cos2a-1-tan60circ-atan60circ-a\/","title":{"rendered":"Prove that \\(2cos2A+1\\over {2cos2A-1}\\) = tan(\\(60^{\\circ}\\) + A)tan(\\(60^{\\circ}\\) – A)"},"content":{"rendered":"
R.H.S. = tan(\\(60^{\\circ}\\) + A)tan(\\(60^{\\circ}\\) – A)<\/p>\n
= (\\(tan60^{\\circ}+tanA\\over {1-tan60^{\\circ}tanA}\\))(\\(tan60^{\\circ}-tanA\\over {1+tan60^{\\circ}tanA}\\))<\/p>\n
= (\\(\\sqrt{3}+tanA\\over {1-\\sqrt{3}tanA}\\))(\\(\\sqrt{3}-tanA\\over {1+\\sqrt{3}tanA}\\))<\/p>\n
= \\(3-tan^2A\\over{1-3tan^2A}\\) = \\(3cos^2A-sin^2A\\over {cos^2A-3sin^2A}\\)<\/p>\n
= \\(2cos^2A+cos^2A-2sin^2A+sin^2A\\over {2cos^2A-2sin^2A-sin^2A-cos^2A}\\)<\/p>\n
= \\(2(cos^2A-sin^2A)+cos^2A+sin^2A\\over {2(cos^2A-sin^2A)-(sin^2A+cos^2A)}\\)<\/p>\n
= \\(2cos2A+1\\over {2cos2A-1}\\) = L.H.S<\/p>\n
Evaluate sin78 \u2013 sin66 \u2013 sin42 + sin6.<\/a><\/p>\n If A + B + C = \\(3\\pi\\over 2\\), then cos2A + cos2B + cos2C is equal to<\/a><\/p>\n \\(sin5x + sin2x \u2013 sinx\\over {cos5x + 2cos3x + 2cos^x + cosx}\\) is equal to<\/a><\/p>\n