{"id":6902,"date":"2021-10-21T22:21:44","date_gmt":"2021-10-21T16:51:44","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6902"},"modified":"2021-10-25T10:07:52","modified_gmt":"2021-10-25T04:37:52","slug":"find-the-vector-of-magnitude-5-which-are-perpendicular-to-the-vectors-veca-2hati-hatj-3hatk-and-vecb-hati-2hatj-hatk","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-vector-of-magnitude-5-which-are-perpendicular-to-the-vectors-veca-2hati-hatj-3hatk-and-vecb-hati-2hatj-hatk\/","title":{"rendered":"Find the vector of magnitude 5 which are perpendicular to the vectors \\(\\vec{a}\\) = \\(2\\hat{i} + \\hat{j} – 3\\hat{k}\\) and \\(\\vec{b}\\) = \\(\\hat{i} – 2\\hat{j} + \\hat{k}\\)"},"content":{"rendered":"
Unit vectors perpendicular to \\(\\vec{a}\\) & \\(\\vec{b}\\) = \\(\\pm\\)\\(\\vec{a}\\times\\vec{b}\\over |\\vec{a}\\times\\vec{b}|\\)<\/p>\n
\\(\\therefore\\)\u00a0 \\(\\vec{a}\\times\\vec{b}\\) = \\(\\begin{vmatrix}
\n\\hat{i} & \\hat{j} & \\hat{k} \\\\
\n2 & 1 & -3 \\\\
\n1 & 2 & -2 \\\\
\n\\end{vmatrix}\\) = \\(-5\\hat{i} – 5\\hat{j} – 5\\hat{k}\\)<\/p>\n
\\(\\therefore\\) Unit Vectors = \\(\\pm\\) \\(-5\\hat{i} – 5\\hat{j} – 5\\hat{k}\\over 5\\sqrt{3}\\)<\/p>\n
Hence the required vectors are \\(\\pm\\) \\(5\\sqrt{3}\\over 3\\)(\\(\\hat{i} + \\hat{j} + \\hat{k}\\))<\/p>\n
Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.<\/a><\/p>\n Find dot product of vectors \\(\\vec{a}\\) = \\(2\\hat{i}+2\\hat{j}-\\hat{k}\\) and \\(\\vec{b}\\) = \\(6\\hat{i}-3\\hat{j}+2\\hat{k}\\)<\/a><\/p>\n For any three vectors \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) prove that [\\(\\vec{a}\\) + \\(\\vec{b}\\) \\(\\vec{b}\\) + \\(\\vec{c}\\) \\(\\vec{c}\\) + \\(\\vec{a}\\)] = 2[\\(\\vec{a}\\) \\(\\vec{b}\\) \\(\\vec{c}\\)]<\/a><\/p>\n If \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are three non zero vectors such that \\(\\vec{a}\\times\\vec{b}\\) = \\(\\vec{c}\\) and \\(\\vec{b}\\times\\vec{c}\\) = \\(\\vec{a}\\), prove that \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are mutually at right angles and |\\(\\vec{b}\\)| = 1 and |\\(\\vec{c}\\)| = |\\(\\vec{a}\\)|<\/a><\/p>\n