{"id":6903,"date":"2021-10-21T22:23:34","date_gmt":"2021-10-21T16:53:34","guid":{"rendered":"https:\/\/mathemerize.com\/?p=6903"},"modified":"2021-10-25T10:07:07","modified_gmt":"2021-10-25T04:37:07","slug":"if-veca-vecb-vecc-are-three-non-zero-vectors-such-that-vecatimesvecb-vecc-and-vecbtimesvecc-veca-prove-that","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/if-veca-vecb-vecc-are-three-non-zero-vectors-such-that-vecatimesvecb-vecc-and-vecbtimesvecc-veca-prove-that\/","title":{"rendered":"If \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are three non zero vectors such that \\(\\vec{a}\\times\\vec{b}\\) = \\(\\vec{c}\\) and \\(\\vec{b}\\times\\vec{c}\\) = \\(\\vec{a}\\), prove that \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are mutually at right angles and |\\(\\vec{b}\\)| = 1 and |\\(\\vec{c}\\)| = |\\(\\vec{a}\\)|"},"content":{"rendered":"
\\(\\vec{a}\\times\\vec{b}\\) = \\(\\vec{c}\\) and \\(\\vec{b}\\times\\vec{c}\\) = \\(\\vec{a}\\)<\/p>\n
\\(\\implies\\)\u00a0 \\(\\vec{c}\\perp\\vec{a}\\) , \\(\\vec{c}\\perp\\vec{b}\\) and \\(\\vec{a}\\perp\\vec{b}\\), \\(\\vec{a}\\perp\\vec{c}\\)<\/p>\n
\\(\\implies\\)\u00a0 \\(\\vec{a}\\perp\\vec{b}\\), \\(\\vec{b}\\perp\\vec{c}\\) and \\(\\vec{c}\\perp\\vec{a}\\)<\/p>\n
\\(\\implies\\)\u00a0 \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are mutually perpendicular vectors.<\/p>\n
Again, \\(\\vec{a}\\times\\vec{b}\\) = \\(\\vec{c}\\) and \\(\\vec{b}\\times\\vec{c}\\) = \\(\\vec{a}\\)<\/p>\n
\\(\\implies\\) |\\(\\vec{a}\\times\\vec{b}\\)| = |\\(\\vec{c}\\)| and |\\(\\vec{b}\\times\\vec{c}\\)| = |\\(\\vec{a}\\)|<\/p>\n
\\(\\implies\\)\u00a0 \\(|\\vec{a}||\\vec{b}|sin{\\pi\\over 2}\\) = |\\(\\vec{c}\\)| and \\(|\\vec{b}||\\vec{c}|sin{\\pi\\over 2}\\) = |\\(\\vec{a}\\)|\u00a0 (\\(\\because\\) \\(\\vec{a}\\perp\\vec{b}\\) and \\(\\vec{b}\\perp\\vec{c}\\))<\/p>\n
\\(\\implies\\)\u00a0 \\(|\\vec{a}||\\vec{b}|\\) = |\\(\\vec{c}\\)| and \\(|\\vec{b}||\\vec{c}|\\) = |\\(\\vec{a}\\)|<\/p>\n
\\(\\implies\\)\u00a0 \\({|\\vec{b}|}^2\\) |\\(\\vec{c}\\)| = |\\(\\vec{c}\\)|<\/p>\n
\\(\\implies\\)\u00a0 \\({|\\vec{b}|}^2\\) = 1<\/p>\n
\\(\\implies\\)\u00a0 \\(|\\vec{b}|\\) = 1<\/p>\n
putting in \\(|\\vec{a}||\\vec{b}|\\) = |\\(\\vec{c}\\)|<\/p>\n
\\(\\implies\\)\u00a0 \\(|\\vec{a}|\\) = |\\(\\vec{c}\\)|<\/p>\n
Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.<\/a><\/p>\n Find dot product of vectors \\(\\vec{a}\\) = \\(2\\hat{i}+2\\hat{j}-\\hat{k}\\) and \\(\\vec{b}\\) = \\(6\\hat{i}-3\\hat{j}+2\\hat{k}\\)<\/a><\/p>\n For any three vectors \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) prove that [\\(\\vec{a}\\) + \\(\\vec{b}\\) \\(\\vec{b}\\) + \\(\\vec{c}\\) \\(\\vec{c}\\) + \\(\\vec{a}\\)] = 2[\\(\\vec{a}\\) \\(\\vec{b}\\) \\(\\vec{c}\\)]<\/a><\/p>\n Find the vector equation of a line which passes through the point A (3, 4, -7) and B (1, -1, 6)<\/a><\/p>\n