{"id":7189,"date":"2021-10-23T00:18:33","date_gmt":"2021-10-22T18:48:33","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7189"},"modified":"2021-10-25T00:29:36","modified_gmt":"2021-10-24T18:59:36","slug":"evaluate-displaystylelim_x-to-0-x3-cotxover-1-cosx","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/evaluate-displaystylelim_x-to-0-x3-cotxover-1-cosx\/","title":{"rendered":"Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(x^3 cotx\\over {1-cosx}\\)"},"content":{"rendered":"
\\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(x^3 cosx\\over {sinx(1-cosx)}\\)<\/p>\n
= \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(x^3 cosx(1 + cosx)\\over {sinxsin^2x}\\)<\/p>\n
= \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\({x^3\\over sin^3x}.cosx(1 + cosx)\\) = 2<\/p>\n
Evaluate the limit : \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) \\(x^2 + x + 1\\over {3x^2 + 2x \u2013 5}\\)<\/a><\/p>\n Evaluate : \\(\\displaystyle{\\lim_{x \\to \\infty}}\\) \\(({7x^2+1\\over 5x^2-1})^{x^5\\over {1-x^3}}\\)<\/a><\/p>\n Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\(xln(1+2tanx)\\over 1-cosx\\)<\/a><\/p>\n Evaluate : \\(\\displaystyle{\\lim_{x \\to 0}}\\) \\((2+x)sin(2+x)-2sin2\\over x\\)<\/a><\/p>\n