{"id":7197,"date":"2021-10-23T00:57:38","date_gmt":"2021-10-22T19:27:38","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7197"},"modified":"2021-10-25T00:48:55","modified_gmt":"2021-10-24T19:18:55","slug":"evaluate-the-given-log-81lover-log_5-3-27log_9-36-34over-log_7-9","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/evaluate-the-given-log-81lover-log_5-3-27log_9-36-34over-log_7-9\/","title":{"rendered":"Evaluate the given log : \\(81^{l\\over {log_5 3}}\\) + \\(27^{log_9 36}\\) + \\(3^{4\\over {log_7 9}}\\)."},"content":{"rendered":"
\\(81^{log_3 5}\\) + \\(3^{3log_9 36}\\) + \\(3^{4log_9 7}\\)<\/p>\n
\\(\\implies\\) \\(3^{4log_3 5}\\) + \\(3^{log_3 {(36)}^{3\/2}}\\) + \\(3^{log_3 {7}^2}\\)<\/p>\n
= 625 + 216 + 49 = 890.<\/p>\n
Solve for x : \\(2^{x + 2}\\) > \\(({1\\over 4})^{1\\over x}\\).<\/a><\/p>\n Find the value of \\(2log{2\\over 5}\\) + \\(3log{25\\over 8}\\) \u2013 \\(log{625\\over 128}\\).<\/a><\/p>\n If \\(log_a x\\) = p and \\(log_b {x^2}\\) = q then \\(log_x \\sqrt{ab}\\) is equal to<\/a><\/p>\n