{"id":7200,"date":"2021-10-23T01:04:19","date_gmt":"2021-10-22T19:34:19","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7200"},"modified":"2021-10-25T00:48:57","modified_gmt":"2021-10-24T19:18:57","slug":"solve-for-x-2x-2-1over-41over-x","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/solve-for-x-2x-2-1over-41over-x\/","title":{"rendered":"Solve for x : \\(2^{x + 2}\\) > \\(({1\\over 4})^{1\\over x}\\)."},"content":{"rendered":"
We have \\(2^{x + 2}\\) > \\(2^{2\/x}\\).<\/p>\n
Since the base 2 > 1, we have x + 2 > -\\(2\\over x\\)<\/p>\n
(the sign of the inequality is retained)<\/p>\n
Now x + 2 + \\(2\\over x\\)\u00a0 \\(\\implies\\) \\(x^2 + 2x + 2\\over x\\) > 0<\/p>\n
\\(\\implies\\) \\((x + 1)^2 + 1\\over x\\) > 0\u00a0 \\(\\implies\\)\u00a0 x \\(\\in\\) \\((0, \\infty)\\)<\/p>\n
Find the value of \\(2log{2\\over 5}\\) + \\(3log{25\\over 8}\\) \u2013 \\(log{625\\over 128}\\).<\/a><\/p>\n Evaluate the given log : \\(81^{l\\over {log_5 3}}\\) + \\(27^{log_9 36}\\) + \\(3^{4\\over {log_7 9}}\\).<\/a><\/p>\n If \\(log_a x\\) = p and \\(log_b {x^2}\\) = q then \\(log_x \\sqrt{ab}\\) is equal to<\/a><\/p>\n