{"id":7216,"date":"2021-10-23T02:19:16","date_gmt":"2021-10-22T20:49:16","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7216"},"modified":"2021-10-25T10:06:54","modified_gmt":"2021-10-25T04:36:54","slug":"find-dot-product-of-vectors-veca-2hati2hatj-hatk-and-vecb-6hati-3hatj2hatk","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-dot-product-of-vectors-veca-2hati2hatj-hatk-and-vecb-6hati-3hatj2hatk\/","title":{"rendered":"Find dot product of vectors \\(\\vec{a}\\) = \\(2\\hat{i}+2\\hat{j}-\\hat{k}\\) and \\(\\vec{b}\\) = \\(6\\hat{i}-3\\hat{j}+2\\hat{k}\\)"},"content":{"rendered":"
We have \\(\\vec{a}\\) = \\(2\\hat{i}+2\\hat{j}-\\hat{k}\\) and \\(\\vec{b}\\) = \\(6\\hat{i}-3\\hat{j}+2\\hat{k}\\)<\/p>\n
\\(\\vec{a}\\).\\(\\vec{b}\\) = (\\(2\\hat{i}+2\\hat{j}-\\hat{k}\\)).(\\(6\\hat{i}-3\\hat{j}+2\\hat{k}\\))<\/p>\n
= (2)(6) + (2)(-3) + (-1)(2) = 12 – 6 – 2 = 4<\/p>\n
Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.<\/a><\/p>\n Find the vector equation of a line which passes through the point A (3, 4, -7) and B (1, -1, 6)<\/a><\/p>\n For any three vectors \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) prove that [\\(\\vec{a}\\) + \\(\\vec{b}\\) \\(\\vec{b}\\) + \\(\\vec{c}\\) \\(\\vec{c}\\) + \\(\\vec{a}\\)] = 2[\\(\\vec{a}\\) \\(\\vec{b}\\) \\(\\vec{c}\\)]<\/a><\/p>\n If \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are three non zero vectors such that \\(\\vec{a}\\times\\vec{b}\\) = \\(\\vec{c}\\) and \\(\\vec{b}\\times\\vec{c}\\) = \\(\\vec{a}\\), prove that \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are mutually at right angles and |\\(\\vec{b}\\)| = 1 and |\\(\\vec{c}\\)| = |\\(\\vec{a}\\)|<\/a><\/p>\n