{"id":7218,"date":"2021-10-23T02:20:38","date_gmt":"2021-10-22T20:50:38","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7218"},"modified":"2021-10-25T10:06:47","modified_gmt":"2021-10-25T04:36:47","slug":"find-the-angle-between-the-vectors-with-the-direction-ratios-proportional-to-4-3-5-and-3-4-5","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-angle-between-the-vectors-with-the-direction-ratios-proportional-to-4-3-5-and-3-4-5\/","title":{"rendered":"Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5."},"content":{"rendered":"
We have,<\/p>\n
\\(\\vec{a}\\) = \\(4\\hat{i} – 3\\hat{j} + 5\\hat{k}\\) and \\(\\vec{b}\\) = \\(3\\hat{i} + 4\\hat{j} + 5\\hat{k}\\)<\/p>\n
Let \\(\\theta\\) is the angle between the given vectors. Then,<\/p>\n
cos\\(\\theta\\) = \\(\\vec{a}.\\vec{b}\\over |\\vec{a}||\\vec{b}|\\)<\/p>\n
\\(\\implies\\) cos\\(\\theta\\) = \\(12 – 12 + 25\\over \\sqrt{16 + 9 + 25} \\sqrt{16 + 9 + 25}\\) = \\(1\\over 2\\)<\/p>\n
\\(\\implies\\) \\(\\theta\\) = \\(\\pi\\over 3\\)<\/p>\n
Find the vector equation of a line which passes through the point A (3, 4, -7) and B (1, -1, 6)<\/a><\/p>\n Find dot product of vectors \\(\\vec{a}\\) = \\(2\\hat{i}+2\\hat{j}-\\hat{k}\\) and \\(\\vec{b}\\) = \\(6\\hat{i}-3\\hat{j}+2\\hat{k}\\)<\/a><\/p>\n For any three vectors \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) prove that [\\(\\vec{a}\\) + \\(\\vec{b}\\) \\(\\vec{b}\\) + \\(\\vec{c}\\) \\(\\vec{c}\\) + \\(\\vec{a}\\)] = 2[\\(\\vec{a}\\) \\(\\vec{b}\\) \\(\\vec{c}\\)]<\/a><\/p>\n If \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are three non zero vectors such that \\(\\vec{a}\\times\\vec{b}\\) = \\(\\vec{c}\\) and \\(\\vec{b}\\times\\vec{c}\\) = \\(\\vec{a}\\), prove that \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are mutually at right angles and |\\(\\vec{b}\\)| = 1 and |\\(\\vec{c}\\)| = |\\(\\vec{a}\\)|<\/a><\/p>\n