{"id":7220,"date":"2021-10-23T02:21:43","date_gmt":"2021-10-22T20:51:43","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7220"},"modified":"2021-10-25T10:04:17","modified_gmt":"2021-10-25T04:34:17","slug":"find-the-vector-equation-of-a-line-which-passes-through-the-point-a-3-4-7-and-b-1-1-6","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-vector-equation-of-a-line-which-passes-through-the-point-a-3-4-7-and-b-1-1-6\/","title":{"rendered":"Find the vector equation of a line which passes through the point A (3, 4, -7) and B (1, -1, 6)"},"content":{"rendered":"
We know that the vector equation of line passing through two points with position vectors \\(\\vec{a}\\) and \\(\\vec{b}\\) is,<\/p>\n
\\(\\vec{r}\\) = \\(\\lambda\\) \\((\\vec{b} – \\vec{a})\\)<\/span><\/p>\n Here \\(\\vec{a}\\) = \\(3\\hat{i} + 4\\hat{j} – 7\\hat{k}\\) and \\(\\vec{b}\\) = \\(\\hat{i} – \\hat{j} + 6\\hat{k}\\).<\/p>\n So, the vector equation of the required line is<\/p>\n \\(\\vec{r}\\) = (\\(3\\hat{i} + 4\\hat{j} – 7\\hat{k}\\)) + \\(\\lambda\\)\u00a0 (\\(\\hat{i} – \\hat{j} + 6\\hat{k}\\) – \\(3\\hat{i} + 4\\hat{j} – 7\\hat{k}\\))<\/p>\n or, \\(\\vec{r}\\) = (\\(3\\hat{i} + 4\\hat{j} – 7\\hat{k}\\)) + \\(\\lambda\\) (\\(-2\\hat{i} – 5\\hat{j} + 13\\hat{k}\\))<\/p>\n where \\(\\lambda\\) is a scalar.<\/p>\n Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.<\/a><\/p>\n Find dot product of vectors \\(\\vec{a}\\) = \\(2\\hat{i}+2\\hat{j}-\\hat{k}\\) and \\(\\vec{b}\\) = \\(6\\hat{i}-3\\hat{j}+2\\hat{k}\\)<\/a><\/p>\n For any three vectors \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) prove that [\\(\\vec{a}\\) + \\(\\vec{b}\\) \\(\\vec{b}\\) + \\(\\vec{c}\\) \\(\\vec{c}\\) + \\(\\vec{a}\\)] = 2[\\(\\vec{a}\\) \\(\\vec{b}\\) \\(\\vec{c}\\)]<\/a><\/p>\n If \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are three non zero vectors such that \\(\\vec{a}\\times\\vec{b}\\) = \\(\\vec{c}\\) and \\(\\vec{b}\\times\\vec{c}\\) = \\(\\vec{a}\\), prove that \\(\\vec{a}\\), \\(\\vec{b}\\), \\(\\vec{c}\\) are mutually at right angles and |\\(\\vec{b}\\)| = 1 and |\\(\\vec{c}\\)| = |\\(\\vec{a}\\)|<\/a><\/p>\n
\nSimilar Questions<\/h3>\n