{"id":7661,"date":"2021-11-01T18:10:15","date_gmt":"2021-11-01T12:40:15","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7661"},"modified":"2021-11-01T19:32:51","modified_gmt":"2021-11-01T14:02:51","slug":"what-is-the-integration-of-x-tan-inverse-x-dx","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-integration-of-x-tan-inverse-x-dx\/","title":{"rendered":"What is the integration of x tan inverse x dx ?"},"content":{"rendered":"
Let I = \\(\\int\\) x\\(tan^{-1}x\\) dx<\/p>\n
By using Integration by parts rule,<\/p>\n
Taking tan inverse x as first function and x as second function. Then,<\/p>\n
I = (\\(tan^{-1}x\\)) \\(\\int\\) x dx – \\(\\int\\){\\({d\\over dx}\\)(\\(tan^{-1}x\\) \\(\\int\\) x dx} dx<\/p>\n
I = (\\(tan^{-1}x\\))\\(x^2\\over 2\\) – \\(\\int\\)\\({1\\over 1 + x^2}\\) \\(\\times\\) \\(x^2\\over 2\\) dx<\/p>\n
\\(\\implies\\) I = \\(x^2\\over 2\\)\\(tan^{-1}x\\) – \\(1\\over 2\\) \\(\\int\\) \\(x^2 + 1 – 1\\over x^2 + 1\\) dx<\/p>\n
\\(\\implies\\) I = \\(x^2\\over 2\\)\\(tan^{-1}x\\) – \\(1\\over 2\\) \\(\\int\\) 1 – \\({1\\over x^2 + 1}\\) dx<\/p>\n
\\(\\implies\\) I = \\(x^2\\over 2\\)\\(tan^{-1}x\\) – \\(1\\over 2\\) (\\(x – tan^{-1}x\\)) + C<\/p>\n
What is the integration of tan inverse root x ?<\/a><\/p>\n Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.<\/a><\/p>\n Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)<\/a><\/p>\n