{"id":7667,"date":"2021-11-01T19:22:29","date_gmt":"2021-11-01T13:52:29","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7667"},"modified":"2021-11-06T00:55:06","modified_gmt":"2021-11-05T19:25:06","slug":"what-is-the-integration-of-tan-inverse-root-x","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-integration-of-tan-inverse-root-x\/","title":{"rendered":"What is the integration of tan inverse root x ?"},"content":{"rendered":"
Let I = \\(\\int\\) \\(tan^{-1}\\sqrt{x}\\).1 dx<\/p>\n
By Applying integration by parts,<\/p>\n
Taking \\(tan^{-1}\\sqrt{x}\\) as first function and 1 as second function. Then<\/p>\n
I = \\(tan^{-1}\\sqrt{x}\\) \\(\\int\\) 1 dx – \\(\\int\\) {\\(d\\over dx\\)\\(tan^{-1}\\sqrt{x}\\) \\(\\int\\) 1 dx } dx<\/p>\n
I = x\\(tan^{-1}\\sqrt{x}\\) – \\(\\int\\) \\(1\\over 2(1+x)\\sqrt{x}\\) . x dx<\/p>\n
Let \\(\\sqrt{x}\\) = t<\/p>\n
\\(1\\over 2\\sqrt{x}\\) dx = dt \\(\\implies\\) dx = 2t dt<\/p>\n
\\(\\implies\\) I = x\\(tan^{-1}\\sqrt{x}\\) – \\(\\int\\) \\(t^2\\over t^2 + 1\\) dt<\/p>\n
\\(\\implies\\) I = x\\(tan^{-1}\\sqrt{x}\\)\u00a0 – \\(\\int\\) dt + \\(\\int\\) \\(1\\over 1 + t^2\\)<\/p>\n
\\(\\implies\\) I = x\\(tan^{-1}\\sqrt{x}\\) – t + \\(tan^{-1}t\\) + C<\/p>\n
Hence, I = x\\(tan^{-1}\\sqrt{x}\\) – \\(\\sqrt{x}\\) + \\(tan^{-1}\\sqrt{x}\\) + C<\/p>\n
What is the integration of x tan inverse x dx ?<\/a><\/p>\n Prove that \\(\\int_{0}^{\\pi\/2}\\) log(sinx)dx = \\(\\int_{0}^{\\pi\/2}\\) log(cosx)dx = -\\(\\pi\\over 2\\)log 2.<\/a><\/p>\n Evaluate : \\(\\int\\) \\(cos^4xdx\\over {sin^3x{(sin^5x + cos^5x)^{3\\over 5}}}\\)<\/a><\/p>\n