{"id":7786,"date":"2021-11-06T14:05:54","date_gmt":"2021-11-06T08:35:54","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7786"},"modified":"2021-11-06T15:35:39","modified_gmt":"2021-11-06T10:05:39","slug":"what-is-the-integration-of-cos-inverse-root-x","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-integration-of-cos-inverse-root-x\/","title":{"rendered":"What is the integration of cos inverse root x ?"},"content":{"rendered":"
We have, I = \\(cos^{-1}\\sqrt{x}\\) . 1 dx<\/p>\n
By Applying integration by parts,<\/p>\n
Taking \\(cos^{-1}\\sqrt{x}\\) as first function and 1 as second function. Then<\/p>\n
I = \\(cos^{-1}\\sqrt{x}\\) \\(\\int\\) 1 dx – \\(\\int\\) {\\(d\\over dx\\)\\(cos^{-1}\\sqrt{x}\\) \\(\\int\\) 1 dx } dx<\/p>\n
I = x\\(cos^{-1}\\sqrt{x}\\) – \\(\\int\\) \\(-1\\over 2\\sqrt{(1-x)}\\sqrt{x}\\) . x dx<\/p>\n
I = x\\(cos^{-1}\\sqrt{x}\\) – \\(\\int\\) \\(-1\\over 2\\) \\(\\sqrt{x}\\over \\sqrt{(1-x)}\\) dx<\/p>\n
Put x = \\(sin^2 t\\)<\/p>\n
dx = 2 sin t cos t dt<\/p>\n
\\(\\implies\\) I = x\\(cos^{-1}\\sqrt{x}\\) + { \\(1\\over 2\\) \\(\\int\\) \\(2cos^2 t\\) dt }<\/p>\n
\\(\\implies\\) I = x\\(cos^{-1}\\sqrt{x}\\)\u00a0 + { \\(1\\over 2\\) \\(\\int\\) (1 – cos 2t) dt }<\/p>\n
\\(\\implies\\) I = x\\(cos^{-1}\\sqrt{x}\\) + \\(1\\over 2\\)t – \\(1\\over 4\\)\\(sin 2t\\) + C<\/p>\n
Now, sin 2t = 2 sin t cos t = \\(2\\sqrt{x} \\sqrt{1 – x}\\) = \\(2\\sqrt{x – x^2}\\)<\/p>\n
I = x\\(cos^{-1}\\sqrt{x}\\) + \\(1\\over 2\\)\\(cos^{-1}\\sqrt{x}\\) – \\(1\\over 4\\) (\\(2\\sqrt{x – x^2}\\))\u00a0 + C<\/p>\n
I = (x + \\({1\\over 2}\\))\\(cos^{-1}\\sqrt{x}\\) – \\(1\\over 2\\) \\(\\sqrt{x – x^2}\\) \u00a0+ C<\/p>\n
What is the integration of sec inverse root x ?<\/a><\/p>\n What is the integration of x cos inverse x ?<\/a><\/p>\n What is integration of sin inverse cos x ?<\/a><\/p>\n What is the integration of sin inverse root x ?<\/a><\/p>\n