{"id":7903,"date":"2021-11-10T16:00:23","date_gmt":"2021-11-10T10:30:23","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7903"},"modified":"2021-11-10T22:20:43","modified_gmt":"2021-11-10T16:50:43","slug":"what-is-the-integration-of-log-x2-dx","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-integration-of-log-x2-dx\/","title":{"rendered":"What is the integration of \\((log x)^2\\) dx ?"},"content":{"rendered":"
We have, I = \\((log x)^2\\) . 1 dx, Then ,<\/p>\n
where \\((log x)^2\\) is the first function and 1 is the second function according to ilate rule,<\/p>\n
I = \\((log x)^2\\) { \\(\\int\\) 1 dx} – \\(\\int\\) {\\(d\\over dx\\) \\((log x)^2\\) . \\(\\int\\) 1 dx } dx<\/p>\n
I = \\((log x)^2\\) x – \\(\\int\\) 2 log x . \\(1\\over x\\) . x dx<\/p>\n
I = x \\((log x)^2\\) – 2 \\(\\int\\) log x .1 dx<\/p>\n
\\(\\implies\\) I = x \\((log x)^2\\) – 2[ log x { \\(\\int\\) 1 dx } – \\(\\int\\) { \\(d\\over dx\\) (log x) \\(\\int\\) 1 dx } dx ]<\/p>\n
\\(\\implies\\) I = x \\((log x)^2\\) – 2 { (log x) x – \\(\\int\\) \\(1\\over x\\) x dx }<\/p>\n
Hence, I = x( \\((log x)^2\\) – 2 (x log x – x) + C<\/p>\n
What is the integration of log cos x dx ?<\/a><\/p>\n What is the integration of log 1\/x ?<\/a><\/p>\n What is the integration of 1\/x log x ?<\/a><\/p>\n