{"id":7995,"date":"2021-11-12T15:44:49","date_gmt":"2021-11-12T10:14:49","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7995"},"modified":"2021-11-14T01:02:10","modified_gmt":"2021-11-13T19:32:10","slug":"find-the-inflection-point-of-fx-3x4-4x3","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-inflection-point-of-fx-3x4-4x3\/","title":{"rendered":"Find the inflection point of f(x) = \\(3x^4 – 4x^3\\)."},"content":{"rendered":"
f(x) = \\(3x^4 – 4x^3\\)<\/p>\n
f'(x) = \\(12x^3 – 12x^2\\)<\/p>\n
f'(x) = \\(12x^2(x – 1)\\)<\/p>\n
Now, f”(x) = \\(12(3x^2 – 2x)\\)<\/p>\n
f”(x) = 12x(3x – 2)<\/p>\n
f”(x) = 0\u00a0 \\(\\implies\\)\u00a0 x = 0, 2\/3<\/p>\n
Here, f”(x) = 0<\/p>\n
Thus, x = 0, 2\/3 are the inflection points<\/a>.<\/p>\n Prove that the function f(x) = \\(x^3 \u2013 3x^2 + 3x \u2013 100\\) is increasing on R<\/a><\/p>\n Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.<\/a><\/p>\n Find the point of inflection for f(x) = \\(x^4\\over 12\\) \u2013 \\(5x^3\\over 6\\) + \\(3x^2\\) + 7.<\/a><\/p>\n Find the point of inflection for the curve y = \\(x^3 \u2013 6x^2 + 12x + 5\\).<\/a><\/p>\n
\nSimilar Questions<\/h3>\n