{"id":7997,"date":"2021-11-12T15:51:20","date_gmt":"2021-11-12T10:21:20","guid":{"rendered":"https:\/\/mathemerize.com\/?p=7997"},"modified":"2021-11-14T01:01:58","modified_gmt":"2021-11-13T19:31:58","slug":"find-the-point-of-inflection-for-the-curve-y-x3-6x2-12x-5","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-point-of-inflection-for-the-curve-y-x3-6x2-12x-5\/","title":{"rendered":"Find the point of inflection for the curve y = \\(x^3 – 6x^2 + 12x + 5\\)."},"content":{"rendered":"
y = \\(x^3 – 6x^2 + 12x + 5\\)<\/p>\n
y’ = \\(3x^2 – 12x + 12\\)<\/p>\n
y” = \\(6x – 12\\)<\/p>\n
y” = 0 \\(\\implies\\) 6x – 12 = 0<\/p>\n
\\(\\implies\\)\u00a0 x = 2<\/p>\n
Since, y” = 0 at x = 2,<\/p>\n
Hence the point of inflection<\/a> is 2.<\/p>\n Prove that the function f(x) = \\(x^3 \u2013 3x^2 + 3x \u2013 100\\) is increasing on R<\/a><\/p>\n Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.<\/a><\/p>\n Find the point of inflection for f(x) = \\(x^4\\over 12\\) \u2013 \\(5x^3\\over 6\\) + \\(3x^2\\) + 7.<\/a><\/p>\n Prove that \\(f(\\theta)\\) = \\({4sin \\theta\\over 2 + cos\\theta} \u2013 \\theta\\) is an increasing function of \\(\\theta\\) in \\([0, {\\pi\\over 2}]\\).<\/a><\/p>\n
\nSimilar Questions<\/h3>\n