{"id":8008,"date":"2021-11-12T16:34:20","date_gmt":"2021-11-12T11:04:20","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8008"},"modified":"2021-11-14T01:01:45","modified_gmt":"2021-11-13T19:31:45","slug":"find-the-point-of-inflection-for-fx-x4over-12-5x3over-6-3x2-7","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-point-of-inflection-for-fx-x4over-12-5x3over-6-3x2-7\/","title":{"rendered":"Find the point of inflection for f(x) = \\(x^4\\over 12\\) – \\(5x^3\\over 6\\) + \\(3x^2\\) + 7."},"content":{"rendered":"
f(x) = \\(x^4\\over 12\\) – \\(5x^3\\over 6\\) + \\(3x^2\\) + 7.<\/p>\n
f'(x) = \\(x^3\\over 3\\) – \\(5x^2\\over 2\\) + 6x<\/p>\n
f”(x) = \\(x^2\\) – 5x + 6<\/p>\n
Since, f”(x) = 0 at point of inflection<\/a>.<\/p>\n \\(\\implies\\) \\(x^2\\) – 5x + 6 = 0<\/p>\n \\(\\implies\\) x = 2 and x = 3<\/p>\n Hence, points of inflection are 2 and 3.<\/p>\n Prove that the function f(x) = \\(x^3 \u2013 3x^2 + 3x \u2013 100\\) is increasing on R<\/a><\/p>\n Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.<\/a><\/p>\n Prove that \\(f(\\theta)\\) = \\({4sin \\theta\\over 2 + cos\\theta} \u2013 \\theta\\) is an increasing function of \\(\\theta\\) in \\([0, {\\pi\\over 2}]\\).<\/a><\/p>\n Find the point of inflection for the curve y = \\(x^3 \u2013 6x^2 + 12x + 5\\).<\/a><\/p>\n
\nSimilar Questions<\/h3>\n