{"id":8017,"date":"2021-11-13T14:54:15","date_gmt":"2021-11-13T09:24:15","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8017"},"modified":"2021-11-13T16:24:21","modified_gmt":"2021-11-13T10:54:21","slug":"separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/","title":{"rendered":"Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing."},"content":{"rendered":"
We have, f(x) = sin 3x<\/p>\n
\\(\\therefore\\)\u00a0 \u00a0f'(x) = 3cos 3x<\/p>\n
Now,\u00a0 0 < x < \\(pi\\over 2\\)\u00a0 \u00a0\\(\\implies\\)\u00a0 0 < 3x < \\(3\\pi\\over 2\\)<\/p>\n
Since cosine function is positive in first quadrant and negative in the second and third quadrants. Therefore, we consider the following cases.<\/p>\n
Case 1<\/strong> : When 0 < 3x < \\(\\pi\\over 2\\)\u00a0 i.e.\u00a0 0 < x < \\(\\pi\\over 6\\)<\/p>\n In this case, we have<\/p>\n 0 < 3x < \\(\\pi\\over 2\\)\u00a0 \u00a0\\(\\implies\\)\u00a0 cos 3x > 0<\/p>\n \\(\\implies\\)\u00a0 3 cos 3x > 0 \\(\\implies\\) f'(x) > 0<\/p>\n Thus, f'(x) > 0 for 0 < 3x < \\(\\pi\\over 2\\)\u00a0 i.e.\u00a0 0 < x < \\(\\pi\\over 6\\)<\/p>\n So, f(x) is increasing on \\((0, {\\pi\\over 6})\\).<\/p>\n Case 2<\/strong> : When \\(\\pi\\over 2\\) < 3x < \\(3\\pi\\over 2\\)\u00a0 i.e.\u00a0 \\(\\pi\\over 6\\) < x < \\(\\pi\\over 2\\)<\/p>\n In this case, we have<\/p>\n \\(\\pi\\over 2\\) < 3x < \\(3\\pi\\over 2\\) \u00a0\\(\\implies\\)\u00a0 cos 3x < 0<\/p>\n \\(\\implies\\)\u00a0 3 cos 3x < 0 \\(\\implies\\) f'(x) < 0<\/p>\n Thus, f'(x) < 0 for \\(\\pi\\over 2\\) < 3x < \\(3\\pi\\over 2\\) \u00a0i.e.\u00a0 \\(\\pi\\over 6\\) < x < \\(\\pi\\over 2\\)<\/p>\n So, f(x) is decreasing on \\(({\\pi\\over 6}, {\\pi\\over 2})\\).<\/p>\n Prove that the function f(x) = \\(x^3 \u2013 3x^2 + 3x \u2013 100\\) is increasing on R<\/a><\/p>\n Prove that \\(f(\\theta)\\) = \\({4sin \\theta\\over 2 + cos\\theta} \u2013 \\theta\\) is an increasing function of \\(\\theta\\) in \\([0, {\\pi\\over 2}]\\).<\/a><\/p>\n Find the point of inflection for f(x) = \\(x^4\\over 12\\) \u2013 \\(5x^3\\over 6\\) + \\(3x^2\\) + 7.<\/a><\/p>\n Find the point of inflection for the curve y = \\(x^3 \u2013 6x^2 + 12x + 5\\).<\/a><\/p>\n
\nSimilar Questions<\/h3>\n