{"id":8017,"date":"2021-11-13T14:54:15","date_gmt":"2021-11-13T09:24:15","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8017"},"modified":"2021-11-13T16:24:21","modified_gmt":"2021-11-13T10:54:21","slug":"separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/","title":{"rendered":"Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing."},"content":{"rendered":"

Solution :<\/h2>\n

We have, f(x) = sin 3x<\/p>\n

\\(\\therefore\\)\u00a0 \u00a0f'(x) = 3cos 3x<\/p>\n

Now,\u00a0 0 < x < \\(pi\\over 2\\)\u00a0 \u00a0\\(\\implies\\)\u00a0 0 < 3x < \\(3\\pi\\over 2\\)<\/p>\n

Since cosine function is positive in first quadrant and negative in the second and third quadrants. Therefore, we consider the following cases.<\/p>\n

Case 1<\/strong> : When 0 < 3x < \\(\\pi\\over 2\\)\u00a0 i.e.\u00a0 0 < x < \\(\\pi\\over 6\\)<\/p>\n

In this case, we have<\/p>\n

0 < 3x < \\(\\pi\\over 2\\)\u00a0 \u00a0\\(\\implies\\)\u00a0 cos 3x > 0<\/p>\n

\\(\\implies\\)\u00a0 3 cos 3x > 0 \\(\\implies\\) f'(x) > 0<\/p>\n

Thus, f'(x) > 0 for 0 < 3x < \\(\\pi\\over 2\\)\u00a0 i.e.\u00a0 0 < x < \\(\\pi\\over 6\\)<\/p>\n

So, f(x) is increasing on \\((0, {\\pi\\over 6})\\).<\/p>\n

Case 2<\/strong> : When \\(\\pi\\over 2\\) < 3x < \\(3\\pi\\over 2\\)\u00a0 i.e.\u00a0 \\(\\pi\\over 6\\) < x < \\(\\pi\\over 2\\)<\/p>\n

In this case, we have<\/p>\n

\\(\\pi\\over 2\\) < 3x < \\(3\\pi\\over 2\\) \u00a0\\(\\implies\\)\u00a0 cos 3x < 0<\/p>\n

\\(\\implies\\)\u00a0 3 cos 3x < 0 \\(\\implies\\) f'(x) < 0<\/p>\n

Thus, f'(x) < 0 for \\(\\pi\\over 2\\) < 3x < \\(3\\pi\\over 2\\) \u00a0i.e.\u00a0 \\(\\pi\\over 6\\) < x < \\(\\pi\\over 2\\)<\/p>\n

So, f(x) is decreasing on \\(({\\pi\\over 6}, {\\pi\\over 2})\\).<\/p>\n


\n

Similar Questions<\/h3>\n

Prove that the function f(x) = \\(x^3 \u2013 3x^2 + 3x \u2013 100\\) is increasing on R<\/a><\/p>\n

Prove that \\(f(\\theta)\\) = \\({4sin \\theta\\over 2 + cos\\theta} \u2013 \\theta\\) is an increasing function of \\(\\theta\\) in \\([0, {\\pi\\over 2}]\\).<\/a><\/p>\n

Find the point of inflection for f(x) = \\(x^4\\over 12\\) \u2013 \\(5x^3\\over 6\\) + \\(3x^2\\) + 7.<\/a><\/p>\n

Find the point of inflection for the curve y = \\(x^3 \u2013 6x^2 + 12x + 5\\).<\/a><\/p>\n

Find the inflection point of f(x) = \\(3x^4 \u2013 4x^3\\).<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

Solution : We have, f(x) = sin 3x \\(\\therefore\\)\u00a0 \u00a0f'(x) = 3cos 3x Now,\u00a0 0 < x < \\(pi\\over 2\\)\u00a0 \u00a0\\(\\implies\\)\u00a0 0 < 3x < \\(3\\pi\\over 2\\) Since cosine function is positive in first quadrant and negative in the second and third quadrants. Therefore, we consider the following cases. Case 1 : When 0 < …<\/p>\n

Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[66,43],"tags":[],"yoast_head":"\nSeparate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.\" \/>\n<meta property=\"og:description\" content=\"Solution : We have, f(x) = sin 3x (therefore)\u00a0 \u00a0f'(x) = 3cos 3x Now,\u00a0 0 < x < (piover 2)\u00a0 \u00a0(implies)\u00a0 0 < 3x < (3piover 2) Since cosine function is positive in first quadrant and negative in the second and third quadrants. Therefore, we consider the following cases. Case 1 : When 0 < … Separate ([0, {piover 2}]) into subintervals in which f(x) = sin 3x is increasing or decreasing. Read More »\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-11-13T09:24:15+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-13T10:54:21+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Separate \\\\([0, {\\\\pi\\\\over 2}]\\\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.\",\"datePublished\":\"2021-11-13T09:24:15+00:00\",\"dateModified\":\"2021-11-13T10:54:21+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/\"},\"wordCount\":263,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Application of Derivatives Questions\",\"Maths Questions\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/\",\"url\":\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/\",\"name\":\"Separate \\\\([0, {\\\\pi\\\\over 2}]\\\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-11-13T09:24:15+00:00\",\"dateModified\":\"2021-11-13T10:54:21+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Separate \\\\([0, {\\\\pi\\\\over 2}]\\\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/","og_locale":"en_US","og_type":"article","og_title":"Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.","og_description":"Solution : We have, f(x) = sin 3x (therefore)\u00a0 \u00a0f'(x) = 3cos 3x Now,\u00a0 0 < x < (piover 2)\u00a0 \u00a0(implies)\u00a0 0 < 3x < (3piover 2) Since cosine function is positive in first quadrant and negative in the second and third quadrants. Therefore, we consider the following cases. Case 1 : When 0 < … Separate ([0, {piover 2}]) into subintervals in which f(x) = sin 3x is increasing or decreasing. Read More »","og_url":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/","og_site_name":"Mathemerize","article_published_time":"2021-11-13T09:24:15+00:00","article_modified_time":"2021-11-13T10:54:21+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.","datePublished":"2021-11-13T09:24:15+00:00","dateModified":"2021-11-13T10:54:21+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/"},"wordCount":263,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Application of Derivatives Questions","Maths Questions"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/","url":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/","name":"Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-11-13T09:24:15+00:00","dateModified":"2021-11-13T10:54:21+00:00","breadcrumb":{"@id":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/separate-0-piover-2-into-subintervals-in-which-fx-sin-3x-is-increasing-or-decreasing\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing."}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8017"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=8017"}],"version-history":[{"count":3,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8017\/revisions"}],"predecessor-version":[{"id":8036,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8017\/revisions\/8036"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=8017"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=8017"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=8017"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}