{"id":8021,"date":"2021-11-13T15:09:20","date_gmt":"2021-11-13T09:39:20","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8021"},"modified":"2021-11-14T01:00:17","modified_gmt":"2021-11-13T19:30:17","slug":"prove-that-ftheta-4sin-thetaover-2-costheta-theta-is-an-increasing-function-of-theta-in-0-piover-2","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-ftheta-4sin-thetaover-2-costheta-theta-is-an-increasing-function-of-theta-in-0-piover-2\/","title":{"rendered":"Prove that \\(f(\\theta)\\) = \\({4sin \\theta\\over 2 + cos\\theta} – \\theta\\) is an increasing function of \\(\\theta\\) in \\([0, {\\pi\\over 2}]\\)."},"content":{"rendered":"
We have, \\(f(\\theta)\\) = \\({4sin \\theta\\over 2 + cos\\theta} – \\theta\\)<\/p>\n
\\(\\implies\\) \\(f'(\\theta)\\) = \\((2 + cos\\theta)(4 cos\\theta) + 4 sin^2\\theta\\over (2 + cos\\theta)^2\\) – 1<\/p>\n
\\(\\implies\\) \\(f'(\\theta)\\)\u00a0 = \\(8 cos\\theta + 4\\over (2 + cos\\theta)^2\\) – 1<\/p>\n
\\(\\implies\\) \\(f'(\\theta)\\) = \\(4\\cos\\theta – cos^2\\theta\\over (2 + cos\\theta)^2\\)<\/p>\n
\\(\\implies\\) \\(f'(\\theta)\\) = \\(cos\\theta(4 – cos\\theta)\\over (2 + cos\\theta)^2\\) > 0\u00a0 for all \\(\\theta\\) \\(\\in\\) \\((0, {\\pi\\over 2})\\).<\/p>\n
[ \\(\\because\\)\u00a0 \u00a0\\(cos\\theta\\) > 0 , 4 – \\(cos\\theta\\) > 0 and 2 + \\(cos\\theta\\) > 0 ]<\/p>\n
Hence, \\(f(\\theta)\\) is increasing<\/a> on \\([0, {\\pi\\over 2}]\\).<\/p>\n Prove that the function f(x) = \\(x^3 \u2013 3x^2 + 3x \u2013 100\\) is increasing on R<\/a><\/p>\n Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.<\/a><\/p>\n Find the point of inflection for f(x) = \\(x^4\\over 12\\) \u2013 \\(5x^3\\over 6\\) + \\(3x^2\\) + 7.<\/a><\/p>\n Find the point of inflection for the curve y = \\(x^3 \u2013 6x^2 + 12x + 5\\).<\/a><\/p>\n
\nSimilar Questions<\/h3>\n