{"id":8052,"date":"2021-11-13T18:21:31","date_gmt":"2021-11-13T12:51:31","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8052"},"modified":"2021-11-14T01:00:01","modified_gmt":"2021-11-13T19:30:01","slug":"find-the-interval-in-which-fx-x2-2x-15-is-increasing-or-decreasing","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-interval-in-which-fx-x2-2x-15-is-increasing-or-decreasing\/","title":{"rendered":"Find the interval in which f(x) = \\(-x^2 – 2x + 15\\) is increasing or decreasing."},"content":{"rendered":"
We have,\u00a0 f(x) = \\(-x^2 – 2x + 15\\)<\/p>\n
\\(\\implies\\) f'(x) = -2x – 2 = -2(x + 1)<\/p>\n
for f(x) to be increasing<\/a>, we must have<\/p>\n f'(x) > 0<\/p>\n -2(x + 1) > 0<\/p>\n \\(\\implies\\) x + 1 < 0<\/p>\n \\(\\implies\\) x < -1 \\(\\implies\\) x \\(\\in\\) \\((-\\infty, -1)\\).<\/p>\n Thus f(x) is increasing on the interval \\((-\\infty, -1)\\).<\/p>\n for f(x) to be decreasing<\/a>, we must have<\/p>\n f'(x) > 0<\/p>\n -2(x + 1) < 0<\/p>\n \\(\\implies\\) x + 1 > 0<\/p>\n \\(\\implies\\) x > -1 \\(\\implies\\) x \\(\\in\\) \\((-1, \\infty)\\).<\/p>\n Thus f(x) is decreasing on the interval \\((-1, \\infty)\\).<\/p>\n Prove that \\(f(\\theta)\\) = \\({4sin \\theta\\over 2 + cos\\theta} \u2013 \\theta\\) is an increasing function of \\(\\theta\\) in \\([0, {\\pi\\over 2}]\\).<\/a><\/p>\n Separate \\([0, {\\pi\\over 2}]\\) into subintervals in which f(x) = sin 3x is increasing or decreasing.<\/a><\/p>\n Prove that the function f(x) = \\(x^3 \u2013 3x^2 + 3x \u2013 100\\) is increasing on R<\/a><\/p>\n Find the point of inflection for the curve y = \\(x^3 \u2013 6x^2 + 12x + 5\\).<\/a><\/p>\n
\nSimilar Questions<\/h3>\n