{"id":8065,"date":"2021-11-13T19:40:44","date_gmt":"2021-11-13T14:10:44","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8065"},"modified":"2021-11-13T21:48:27","modified_gmt":"2021-11-13T16:18:27","slug":"check-the-orthogonality-of-the-curves-y2-x-and-x2-y","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/","title":{"rendered":"Check the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y."},"content":{"rendered":"

Solution :<\/h2>\n

Solving the curves simultaneously we get points of intersection as (1, 1) and (0, 0).<\/p>\n

At (1, 1) for first curve \\(2y({dy\\over dx})_1\\) = 1\u00a0 \\(\\implies\\)\u00a0 \\(m_1\\) = \\(1\\over 2\\)<\/p>\n

& for second curve 2x = \\(({dy\\over dx})_2\\) \\(\\implies\\)\u00a0 \\(m_2\\) = 2<\/p>\n

\\(m_1m_2\\) = -1 at (1, 1).<\/p>\n

But at (0, 0) clearly x-axis & y-axis are their respective tangents hence they are orthogonal at (0, 0) but not at (1, 1). Hence these curves are not said to be orthogonal.<\/p>\n


\n

Similar Questions<\/h3>\n

Find the equations of the tangent and the normal at the point \u2018t\u2019 on the curve x = \\(a sin^3 t\\), y = \\(b cos^3 t\\).<\/a><\/p>\n

Find the equation of the normal to the curve y = \\(2x^2 + 3 sin x\\) at x = 0.<\/a><\/p>\n

Find the angle between the curves xy = 6 and \\(x^2 y\\) =12.<\/a><\/p>\n

Find the equation of the tangent to curve y = \\(-5x^2 + 6x + 7\\)\u00a0 at the point (1\/2, 35\/4).<\/a><\/p>\n

The angle of intersection between the curve \\(x^2\\) = 32y and \\(y^2\\) = 4x at point (16, 8) is<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

Solution : Solving the curves simultaneously we get points of intersection as (1, 1) and (0, 0). At (1, 1) for first curve \\(2y({dy\\over dx})_1\\) = 1\u00a0 \\(\\implies\\)\u00a0 \\(m_1\\) = \\(1\\over 2\\) & for second curve 2x = \\(({dy\\over dx})_2\\) \\(\\implies\\)\u00a0 \\(m_2\\) = 2 \\(m_1m_2\\) = -1 at (1, 1). But at (0, 0) clearly …<\/p>\n

Check the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y.<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[66,43],"tags":[],"yoast_head":"\nCheck the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y.<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Check the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y.\" \/>\n<meta property=\"og:description\" content=\"Solution : Solving the curves simultaneously we get points of intersection as (1, 1) and (0, 0). At (1, 1) for first curve (2y({dyover dx})_1) = 1\u00a0 (implies)\u00a0 (m_1) = (1over 2) & for second curve 2x = (({dyover dx})_2) (implies)\u00a0 (m_2) = 2 (m_1m_2) = -1 at (1, 1). But at (0, 0) clearly … Check the orthogonality of the curves (y^2) = x and (x^2) = y. Read More »\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-11-13T14:10:44+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-13T16:18:27+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"1 minute\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Check the orthogonality of the curves \\\\(y^2\\\\) = x and \\\\(x^2\\\\) = y.\",\"datePublished\":\"2021-11-13T14:10:44+00:00\",\"dateModified\":\"2021-11-13T16:18:27+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/\"},\"wordCount\":156,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Application of Derivatives Questions\",\"Maths Questions\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/\",\"url\":\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/\",\"name\":\"Check the orthogonality of the curves \\\\(y^2\\\\) = x and \\\\(x^2\\\\) = y.\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-11-13T14:10:44+00:00\",\"dateModified\":\"2021-11-13T16:18:27+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Check the orthogonality of the curves \\\\(y^2\\\\) = x and \\\\(x^2\\\\) = y.\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Check the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y.","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/","og_locale":"en_US","og_type":"article","og_title":"Check the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y.","og_description":"Solution : Solving the curves simultaneously we get points of intersection as (1, 1) and (0, 0). At (1, 1) for first curve (2y({dyover dx})_1) = 1\u00a0 (implies)\u00a0 (m_1) = (1over 2) & for second curve 2x = (({dyover dx})_2) (implies)\u00a0 (m_2) = 2 (m_1m_2) = -1 at (1, 1). But at (0, 0) clearly … Check the orthogonality of the curves (y^2) = x and (x^2) = y. Read More »","og_url":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/","og_site_name":"Mathemerize","article_published_time":"2021-11-13T14:10:44+00:00","article_modified_time":"2021-11-13T16:18:27+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"1 minute"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Check the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y.","datePublished":"2021-11-13T14:10:44+00:00","dateModified":"2021-11-13T16:18:27+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/"},"wordCount":156,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Application of Derivatives Questions","Maths Questions"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/","url":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/","name":"Check the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y.","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-11-13T14:10:44+00:00","dateModified":"2021-11-13T16:18:27+00:00","breadcrumb":{"@id":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/check-the-orthogonality-of-the-curves-y2-x-and-x2-y\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Check the orthogonality of the curves \\(y^2\\) = x and \\(x^2\\) = y."}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8065"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=8065"}],"version-history":[{"count":4,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8065\/revisions"}],"predecessor-version":[{"id":8102,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8065\/revisions\/8102"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=8065"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=8065"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=8065"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}