{"id":8155,"date":"2021-11-14T17:54:26","date_gmt":"2021-11-14T12:24:26","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8155"},"modified":"2021-11-15T16:04:00","modified_gmt":"2021-11-15T10:34:00","slug":"verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/","title":{"rendered":"Verify Rolle’s theorem for the function f(x) = \\(x^2\\) – 5x + 6 on the interval [2, 3]."},"content":{"rendered":"

Solution :<\/h2>\n

Since a polynomial function is everywhere differentiable and so continuous also.<\/p>\n

Therefore, f(x) is continuous on [2, 3] and differentiable on (2, 3).<\/p>\n

Also, f(2) = \\(2^2\\) – 5 \\(\\times\\) 2 + 6 = 0 and f(3) = \\(3^2\\) – 5 \\(\\times\\) 3 + 6 = 0<\/p>\n

\\(\\therefore\\) f(2) = f(3)<\/p>\n

Thus, all the conditions of rolle’s theorem are satisfied. Now, we have to show that there exists some c \\(\\in\\) (2, 3) such that f'(c) = 0.<\/p>\n

for this we proceed as follows,<\/p>\n

We have,<\/p>\n

f(x) = \\(x^2\\) – 5x + 6 \\(\\implies\\) f'(x) = 2x – 5<\/p>\n

\\(\\therefore\\) f'(x) = 0 \\(\\implies\\) 2x – 5 = 0 \\(\\implies\\) x = 2.5<\/p>\n

Thus, c = 2.5 \\(\\in\\) (2, 3) such that f'(c) = 0. Hence, Rolle’s theorem is verified.<\/p>\n


\n

Similar Questions<\/h3>\n

Find the approximate value of f(3.02), where f(x) = \\(3x^2 + 5x + 3\\).<\/a><\/p>\n

If the radius of a sphere is measured as 9 cm with an error of 0.03 cm, then find the approximating error in calculating its volume.<\/a><\/p>\n

It is given that for the function f(x) = \\(x^3 \u2013 6x^2 + ax + b\\) on [1, 3], Rolles\u2019s theorem holds with c = \\(2 +{1\\over \\sqrt{3}}\\). Find the values of a and b, if f(1) = f(3) = 0.<\/a><\/p>\n

Find the point on the curve y = cos x \u2013 1, x \\(\\in\\) \\([{\\pi\\over 2}, {3\\pi\\over 2}]\\) at which tangent is parallel to the x-axis.<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

Solution : Since a polynomial function is everywhere differentiable and so continuous also. Therefore, f(x) is continuous on [2, 3] and differentiable on (2, 3). Also, f(2) = \\(2^2\\) – 5 \\(\\times\\) 2 + 6 = 0 and f(3) = \\(3^2\\) – 5 \\(\\times\\) 3 + 6 = 0 \\(\\therefore\\) f(2) = f(3) Thus, all …<\/p>\n

Verify Rolle’s theorem for the function f(x) = \\(x^2\\) – 5x + 6 on the interval [2, 3].<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[66,43],"tags":[],"yoast_head":"\nVerify Rolle's theorem for the function f(x) = \\(x^2\\) - 5x + 6 on the interval [2, 3]. - Mathemerize<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Verify Rolle's theorem for the function f(x) = \\(x^2\\) - 5x + 6 on the interval [2, 3]. - Mathemerize\" \/>\n<meta property=\"og:description\" content=\"Solution : Since a polynomial function is everywhere differentiable and so continuous also. Therefore, f(x) is continuous on [2, 3] and differentiable on (2, 3). Also, f(2) = (2^2) – 5 (times) 2 + 6 = 0 and f(3) = (3^2) – 5 (times) 3 + 6 = 0 (therefore) f(2) = f(3) Thus, all … Verify Rolle’s theorem for the function f(x) = (x^2) – 5x + 6 on the interval [2, 3]. Read More »\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-11-14T12:24:26+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-15T10:34:00+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"1 minute\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Verify Rolle’s theorem for the function f(x) = \\\\(x^2\\\\) – 5x + 6 on the interval [2, 3].\",\"datePublished\":\"2021-11-14T12:24:26+00:00\",\"dateModified\":\"2021-11-15T10:34:00+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/\"},\"wordCount\":200,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Application of Derivatives Questions\",\"Maths Questions\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/\",\"url\":\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/\",\"name\":\"Verify Rolle's theorem for the function f(x) = \\\\(x^2\\\\) - 5x + 6 on the interval [2, 3]. - Mathemerize\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-11-14T12:24:26+00:00\",\"dateModified\":\"2021-11-15T10:34:00+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Verify Rolle’s theorem for the function f(x) = \\\\(x^2\\\\) – 5x + 6 on the interval [2, 3].\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Verify Rolle's theorem for the function f(x) = \\(x^2\\) - 5x + 6 on the interval [2, 3]. - Mathemerize","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/","og_locale":"en_US","og_type":"article","og_title":"Verify Rolle's theorem for the function f(x) = \\(x^2\\) - 5x + 6 on the interval [2, 3]. - Mathemerize","og_description":"Solution : Since a polynomial function is everywhere differentiable and so continuous also. Therefore, f(x) is continuous on [2, 3] and differentiable on (2, 3). Also, f(2) = (2^2) – 5 (times) 2 + 6 = 0 and f(3) = (3^2) – 5 (times) 3 + 6 = 0 (therefore) f(2) = f(3) Thus, all … Verify Rolle’s theorem for the function f(x) = (x^2) – 5x + 6 on the interval [2, 3]. Read More »","og_url":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/","og_site_name":"Mathemerize","article_published_time":"2021-11-14T12:24:26+00:00","article_modified_time":"2021-11-15T10:34:00+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"1 minute"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Verify Rolle’s theorem for the function f(x) = \\(x^2\\) – 5x + 6 on the interval [2, 3].","datePublished":"2021-11-14T12:24:26+00:00","dateModified":"2021-11-15T10:34:00+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/"},"wordCount":200,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Application of Derivatives Questions","Maths Questions"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/","url":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/","name":"Verify Rolle's theorem for the function f(x) = \\(x^2\\) - 5x + 6 on the interval [2, 3]. - Mathemerize","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-11-14T12:24:26+00:00","dateModified":"2021-11-15T10:34:00+00:00","breadcrumb":{"@id":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/verify-rolles-theorem-for-the-function-fx-x2-5x-6-on-the-interval-2-3\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Verify Rolle’s theorem for the function f(x) = \\(x^2\\) – 5x + 6 on the interval [2, 3]."}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8155"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=8155"}],"version-history":[{"count":2,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8155\/revisions"}],"predecessor-version":[{"id":8177,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8155\/revisions\/8177"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=8155"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=8155"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=8155"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}