{"id":8263,"date":"2021-11-20T00:38:41","date_gmt":"2021-11-19T19:08:41","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8263"},"modified":"2021-11-20T01:29:08","modified_gmt":"2021-11-19T19:59:08","slug":"by-using-binomial-theorem-expand-1-x-x23","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/by-using-binomial-theorem-expand-1-x-x23\/","title":{"rendered":"By using binomial theorem, expand \\((1 + x + x^2)^3\\)."},"content":{"rendered":"
Let y = x + \\(x^2\\). Then,<\/p>\n
\\((1 + x + x^2)^3\\) = \\((1 + y)^3\\)<\/p>\n
= \\(^3C_0\\) + \\(^3C_1 y\\) + \\(^3C_2 y^2\\) + \\(^3C_3 y^3\\)<\/p>\n
= \\(1 + 3y + 3y^2 + y^3\\) = 1 + 3\\((x + x^2)\\) + 3\\((x + x^2)^2\\) + \\((x + x^2)^3\\)<\/p>\n
= \\(x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1\\)<\/p>\n
Find the middle term in the expansion of \\(({2\\over 3}x^2 \u2013 {3\\over 2x})^{20}\\).<\/a><\/p>\n Find the 9th term in the expansion of \\(({x\\over a} \u2013 {3a\\over x^2})^{12}\\).<\/a><\/p>\n Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).<\/a><\/p>\n Which is larger \\((1.01)^{1000000}\\) or 10,000?<\/a><\/p>\n