{"id":8265,"date":"2021-11-20T00:46:12","date_gmt":"2021-11-19T19:16:12","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8265"},"modified":"2021-11-20T01:28:54","modified_gmt":"2021-11-19T19:58:54","slug":"which-is-larger-1-011000000-or-10000","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/which-is-larger-1-011000000-or-10000\/","title":{"rendered":"Which is larger \\((1.01)^{1000000}\\) or 10,000?"},"content":{"rendered":"
We have, \\((1.01)^{1000000}\\)\u00a0 – 10000<\/p>\n
= \\((1 + 0.01)^{1000000}\\) – 10000<\/p>\n
By using binomial theorem,<\/p>\n
= \\(^{1000000}C_0\\) + \\(^{1000000}C_1 (0.01)\\)\u00a0 + \\(^{1000000}C_2 (0.01)^2\\)\u00a0 + …… + \\(^{1000000}C_{1000000} (0.01)^{1000000}\\) – 10000<\/p>\n
= (1 + 1000000(0.01) + other positive terms) – 10000<\/p>\n
= (1 + 10000 + other positive terms) – 10000<\/p>\n
= 1 + other positive terms > 0<\/p>\n
Hence,\u00a0 \\((1.01)^{1000000}\\) is greater than 10000.<\/p>\n
Find the middle term in the expansion of \\(({2\\over 3}x^2 \u2013 {3\\over 2x})^{20}\\).<\/a><\/p>\n Find the 9th term in the expansion of \\(({x\\over a} \u2013 {3a\\over x^2})^{12}\\).<\/a><\/p>\n Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).<\/a><\/p>\n Find the middle term in the expansion of \\((3x \u2013 {x^3\\over 6})^7\\).<\/a><\/p>\n