{"id":8267,"date":"2021-11-20T01:01:55","date_gmt":"2021-11-19T19:31:55","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8267"},"modified":"2021-11-20T01:31:00","modified_gmt":"2021-11-19T20:01:00","slug":"find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/","title":{"rendered":"Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\)."},"content":{"rendered":"
We know that the (r + 1)th term or general term in the expansion<\/a> of \\((x + a)^n\\) is given by<\/p>\n \\(T_{r + 1}\\) = \\(^{n}C_r x^{n – r} a^r\\)<\/p>\n In the expansion of \\((2x^2 + {1\\over x})^{12}\\), we have<\/p>\n \\(T_{10}\\) = \\(T_{9 + 1}\\) = \\(^{12}C_9 (2x^2)^{12 – 9} ({1\\over x})^9\\)<\/p>\n \\(\\implies\\) \\(T_{10}\\) = \\(^{12}C_9 (2x^2)^3 {1\\over x^9}\\)<\/p>\n \\(\\implies\\) \\(T_{10}\\) = \\(^{12}C_9\\) \\(8\\over x^3\\) = \\(1760\\over x^3\\)<\/p>\n Find the middle term in the expansion of \\(({2\\over 3}x^2 \u2013 {3\\over 2x})^{20}\\).<\/a><\/p>\n Find the 9th term in the expansion of \\(({x\\over a} \u2013 {3a\\over x^2})^{12}\\).<\/a><\/p>\n Find the middle term in the expansion of \\((3x \u2013 {x^3\\over 6})^7\\).<\/a><\/p>\n Which is larger \\((1.01)^{1000000}\\) or 10,000?<\/a><\/p>\n
\nSimilar Questions<\/h3>\n