{"id":8267,"date":"2021-11-20T01:01:55","date_gmt":"2021-11-19T19:31:55","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8267"},"modified":"2021-11-20T01:31:00","modified_gmt":"2021-11-19T20:01:00","slug":"find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/","title":{"rendered":"Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\)."},"content":{"rendered":"

Solution :<\/h2>\n

We know that the (r + 1)th term or general term in the expansion<\/a> of \\((x + a)^n\\) is given by<\/p>\n

\\(T_{r + 1}\\) = \\(^{n}C_r x^{n – r} a^r\\)<\/p>\n

In the expansion of \\((2x^2 + {1\\over x})^{12}\\), we have<\/p>\n

\\(T_{10}\\) = \\(T_{9 + 1}\\) = \\(^{12}C_9 (2x^2)^{12 – 9} ({1\\over x})^9\\)<\/p>\n

\\(\\implies\\) \\(T_{10}\\) = \\(^{12}C_9 (2x^2)^3 {1\\over x^9}\\)<\/p>\n

\\(\\implies\\) \\(T_{10}\\) = \\(^{12}C_9\\) \\(8\\over x^3\\) = \\(1760\\over x^3\\)<\/p>\n


\n

Similar Questions<\/h3>\n

Find the middle term in the expansion of \\(({2\\over 3}x^2 \u2013 {3\\over 2x})^{20}\\).<\/a><\/p>\n

Find the 9th term in the expansion of \\(({x\\over a} \u2013 {3a\\over x^2})^{12}\\).<\/a><\/p>\n

Find the middle term in the expansion of \\((3x \u2013 {x^3\\over 6})^7\\).<\/a><\/p>\n

Which is larger \\((1.01)^{1000000}\\) or 10,000?<\/a><\/p>\n

By using binomial theorem, expand \\((1 + x + x^2)^3\\).<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

Solution : We know that the (r + 1)th term or general term in the expansion of \\((x + a)^n\\) is given by \\(T_{r + 1}\\) = \\(^{n}C_r x^{n – r} a^r\\) In the expansion of \\((2x^2 + {1\\over x})^{12}\\), we have \\(T_{10}\\) = \\(T_{9 + 1}\\) = \\(^{12}C_9 (2x^2)^{12 – 9} ({1\\over x})^9\\) \\(\\implies\\) …<\/p>\n

Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[177,43],"tags":[],"yoast_head":"\nFind the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).\" \/>\n<meta property=\"og:description\" content=\"Solution : We know that the (r + 1)th term or general term in the expansion of ((x + a)^n) is given by (T_{r + 1}) = (^{n}C_r x^{n – r} a^r) In the expansion of ((2x^2 + {1over x})^{12}), we have (T_{10}) = (T_{9 + 1}) = (^{12}C_9 (2x^2)^{12 – 9} ({1over x})^9) (implies) … Find the 10th term in the binomial expansion of ((2x^2 + {1over x})^{12}). Read More »\" \/>\n<meta property=\"og:url\" content=\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/\" \/>\n<meta property=\"og:site_name\" content=\"Mathemerize\" \/>\n<meta property=\"article:published_time\" content=\"2021-11-19T19:31:55+00:00\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-19T20:01:00+00:00\" \/>\n<meta name=\"author\" content=\"mathemerize\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"mathemerize\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"1 minute\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"Article\",\"@id\":\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/#article\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/\"},\"author\":{\"name\":\"mathemerize\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\"},\"headline\":\"Find the 10th term in the binomial expansion of \\\\((2x^2 + {1\\\\over x})^{12}\\\\).\",\"datePublished\":\"2021-11-19T19:31:55+00:00\",\"dateModified\":\"2021-11-19T20:01:00+00:00\",\"mainEntityOfPage\":{\"@id\":\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/\"},\"wordCount\":123,\"commentCount\":0,\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"articleSection\":[\"Binomial Theorem Questions\",\"Maths Questions\"],\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"CommentAction\",\"name\":\"Comment\",\"target\":[\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/#respond\"]}]},{\"@type\":\"WebPage\",\"@id\":\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/\",\"url\":\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/\",\"name\":\"Find the 10th term in the binomial expansion of \\\\((2x^2 + {1\\\\over x})^{12}\\\\).\",\"isPartOf\":{\"@id\":\"https:\/\/mathemerize.com\/#website\"},\"datePublished\":\"2021-11-19T19:31:55+00:00\",\"dateModified\":\"2021-11-19T20:01:00+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/mathemerize.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Find the 10th term in the binomial expansion of \\\\((2x^2 + {1\\\\over x})^{12}\\\\).\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/mathemerize.com\/#website\",\"url\":\"https:\/\/mathemerize.com\/\",\"name\":\"Mathemerize\",\"description\":\"Maths Tutorials - Study Math Online\",\"publisher\":{\"@id\":\"https:\/\/mathemerize.com\/#organization\"},\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/mathemerize.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Organization\",\"@id\":\"https:\/\/mathemerize.com\/#organization\",\"name\":\"Mathemerize\",\"url\":\"https:\/\/mathemerize.com\/\",\"logo\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\",\"url\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"contentUrl\":\"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1\",\"width\":140,\"height\":96,\"caption\":\"Mathemerize\"},\"image\":{\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/\"},\"sameAs\":[\"https:\/\/www.instagram.com\/mathemerize\/\"]},{\"@type\":\"Person\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df\",\"name\":\"mathemerize\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/mathemerize.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g\",\"caption\":\"mathemerize\"},\"sameAs\":[\"https:\/\/mathemerize.com\"],\"url\":\"https:\/\/mathemerize.com\/author\/mathemerize\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/","og_locale":"en_US","og_type":"article","og_title":"Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).","og_description":"Solution : We know that the (r + 1)th term or general term in the expansion of ((x + a)^n) is given by (T_{r + 1}) = (^{n}C_r x^{n – r} a^r) In the expansion of ((2x^2 + {1over x})^{12}), we have (T_{10}) = (T_{9 + 1}) = (^{12}C_9 (2x^2)^{12 – 9} ({1over x})^9) (implies) … Find the 10th term in the binomial expansion of ((2x^2 + {1over x})^{12}). Read More »","og_url":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/","og_site_name":"Mathemerize","article_published_time":"2021-11-19T19:31:55+00:00","article_modified_time":"2021-11-19T20:01:00+00:00","author":"mathemerize","twitter_card":"summary_large_image","twitter_misc":{"Written by":"mathemerize","Est. reading time":"1 minute"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"Article","@id":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/#article","isPartOf":{"@id":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/"},"author":{"name":"mathemerize","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df"},"headline":"Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).","datePublished":"2021-11-19T19:31:55+00:00","dateModified":"2021-11-19T20:01:00+00:00","mainEntityOfPage":{"@id":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/"},"wordCount":123,"commentCount":0,"publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"articleSection":["Binomial Theorem Questions","Maths Questions"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/#respond"]}]},{"@type":"WebPage","@id":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/","url":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/","name":"Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\).","isPartOf":{"@id":"https:\/\/mathemerize.com\/#website"},"datePublished":"2021-11-19T19:31:55+00:00","dateModified":"2021-11-19T20:01:00+00:00","breadcrumb":{"@id":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/mathemerize.com\/find-the-10th-term-in-the-binomial-expansion-of-2x2-1over-x12\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/mathemerize.com\/"},{"@type":"ListItem","position":2,"name":"Find the 10th term in the binomial expansion of \\((2x^2 + {1\\over x})^{12}\\)."}]},{"@type":"WebSite","@id":"https:\/\/mathemerize.com\/#website","url":"https:\/\/mathemerize.com\/","name":"Mathemerize","description":"Maths Tutorials - Study Math Online","publisher":{"@id":"https:\/\/mathemerize.com\/#organization"},"potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/mathemerize.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https:\/\/mathemerize.com\/#organization","name":"Mathemerize","url":"https:\/\/mathemerize.com\/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/","url":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","contentUrl":"https:\/\/i1.wp.com\/mathemerize.com\/wp-content\/uploads\/2021\/05\/logo.png?fit=140%2C96&ssl=1","width":140,"height":96,"caption":"Mathemerize"},"image":{"@id":"https:\/\/mathemerize.com\/#\/schema\/logo\/image\/"},"sameAs":["https:\/\/www.instagram.com\/mathemerize\/"]},{"@type":"Person","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/104c8bc54f90618130a6665299bc55df","name":"mathemerize","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/mathemerize.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/f0649d8b9c9f4ba7f1682b12d040d2a3?s=96&d=mm&r=g","caption":"mathemerize"},"sameAs":["https:\/\/mathemerize.com"],"url":"https:\/\/mathemerize.com\/author\/mathemerize\/"}]}},"jetpack_featured_media_url":"","_links":{"self":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8267"}],"collection":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/comments?post=8267"}],"version-history":[{"count":5,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8267\/revisions"}],"predecessor-version":[{"id":8294,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/posts\/8267\/revisions\/8294"}],"wp:attachment":[{"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/media?parent=8267"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/categories?post=8267"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/mathemerize.com\/wp-json\/wp\/v2\/tags?post=8267"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}