differentiation of infinite series<\/a>,<\/p>\nDifferentiating both sides with respect to x,<\/p>\n
2y \\(dy\\over dx\\) =cosx + \\(dy\\over dx\\)<\/p>\n
\\(\\implies\\) \\(dy\\over dx\\)\\((2y – 1)\\) = cos x<\/p>\n
\\(\\implies\\) \\(dy\\over dx\\) = \\(cos x\\over {2y – 1}\\)<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : Since by deleting a single term from an infinite series, it remains same. Therefore, the given function may be written as y = \\(\\sqrt{sin x + y}\\) Squaring on both sides, \\(\\implies\\) \\(y^2\\) = sin x + y By using differentiation of infinite series, Differentiating both sides with respect to x, 2y \\(dy\\over …<\/p>\n
If y = \\(\\sqrt{sinx + \\sqrt{sinx + \\sqrt{sinx + ……. to \\infty}}}\\), find \\(dy\\over dx\\).<\/span> Read More »<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-global-header-display":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":""},"categories":[65,43],"tags":[],"yoast_head":"\nIf y = \\(\\sqrt{sinx + \\sqrt{sinx + \\sqrt{sinx + ....... to \\infty}}}\\), find \\(dy\\over dx\\).<\/title>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\t\n\t\n\t\n