{"id":8951,"date":"2021-12-12T19:48:59","date_gmt":"2021-12-12T14:18:59","guid":{"rendered":"https:\/\/mathemerize.com\/?p=8951"},"modified":"2021-12-12T20:42:15","modified_gmt":"2021-12-12T15:12:15","slug":"what-is-the-formula-for-the-inradius","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-formula-for-the-inradius\/","title":{"rendered":"What is the Formula for the Inradius ?"},"content":{"rendered":"
Inradius Formula (r) = \\(\\Delta\\over s\\)<\/p><\/blockquote>\n
Where r = radius of the circle inscribed in a given triangle<\/p>\n
\\(\\Delta\\) = area of the given triangle<\/p>\n
\\(\\Delta\\) = \\(\\sqrt{s(s – a)(s – b)(s – c)}\\)<\/p>\n
s = half perimeter of the given triangle<\/p>\n
s = \\(a + b + c\\over 2\\)\u00a0 for all a, b c are the sides of a given triangle.<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : Inradius Formula (r) = \\(\\Delta\\over s\\) Where r = radius of the circle inscribed in a given triangle \\(\\Delta\\) = area of the given triangle \\(\\Delta\\) = \\(\\sqrt{s(s – a)(s – b)(s – c)}\\) s = half perimeter of the given triangle s = \\(a + b + c\\over 2\\)\u00a0 for all a, …<\/p>\n