{"id":9260,"date":"2022-01-05T00:20:51","date_gmt":"2022-01-04T18:50:51","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9260"},"modified":"2022-01-05T00:22:19","modified_gmt":"2022-01-04T18:52:19","slug":"prove-that-cos-a-b-cos-a-b-cos2-a-sin2-b","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-cos-a-b-cos-a-b-cos2-a-sin2-b\/","title":{"rendered":"Prove that cos (A + B) cos (A – B) = \\(cos^2 A\\) – \\(sin^2 B\\)"},"content":{"rendered":"
We have,<\/p>\n
cos (A + B) cos (A – B) = (cos A cos B – sin A sin B) (cos A cos B + sin A sin B)<\/p>\n
= \\(cos^2 A cos^2 B\\) – \\(sin^2 A sin^2 B\\)<\/p>\n
= \\(cos^2 A (1 – sin^2 B)\\) – \\((1 – cos^2 A) sin^2 B\\)<\/p>\n
= \\(cos^2 A\\) – \\(cos^2 A sin^2 B\\) – \\(sin^2 B\\) + \\(cos^2 A sin^2 B\\)<\/p>\n
= \\(cos^2 A – sin^2 B\\)<\/p>\n
Now, we can also write it as,<\/p>\n
= \\((1 – sin^2 A)\\) – \\((1 – cos^2 B)\\) = \\(cos^2 B\\) – \\(sin^2 A\\)<\/p>\n
Hence, cos (A + B) cos (A – B) = \\(cos^2 A\\) – \\(sin^2 B\\) = \\(cos^2 B\\) – \\(sin^2 A\\)<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : We have, cos (A + B) cos (A – B) = (cos A cos B – sin A sin B) (cos A cos B + sin A sin B) = \\(cos^2 A cos^2 B\\) – \\(sin^2 A sin^2 B\\) = \\(cos^2 A (1 – sin^2 B)\\) – \\((1 – cos^2 A) sin^2 B\\) …<\/p>\n