The value of tan 75 degrees<\/strong> is \\(\\sqrt{3} + 1\\over \\sqrt{3} – 1\\)<\/strong>.<\/p>\n
Proof : <\/strong><\/p>\n
We write tan 75 as tan (45 + 30).<\/p>\n
Using the formula of tan (A + B),<\/p>\n
tan 75 = tan (45 + 30) = \\(tan 45 + tan 30\\over 1 – tan 45 tan 30\\)<\/p>\n
\\(\\implies\\) tan 75 = \\(1 + {1\\over \\sqrt{3}}\\over 1 – {1\\over \\sqrt{3}}\\) = \\(\\sqrt{3} + 1\\over \\sqrt{3} – 1\\)<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : The value of tan 75 degrees is \\(\\sqrt{3} + 1\\over \\sqrt{3} – 1\\). Proof : We write tan 75 as tan (45 + 30). Using the formula of tan (A + B), tan 75 = tan (45 + 30) = \\(tan 45 + tan 30\\over 1 – tan 45 tan 30\\) \\(\\implies\\) tan …<\/p>\n