{"id":9310,"date":"2022-01-09T22:53:00","date_gmt":"2022-01-09T17:23:00","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9310"},"modified":"2022-01-16T17:13:25","modified_gmt":"2022-01-16T11:43:25","slug":"what-is-the-formula-of-sin-2a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-formula-of-sin-2a\/","title":{"rendered":"Sin 2A Formula – Proof and Examples"},"content":{"rendered":"
Here you will learn what is the formula of sin 2A in terms of sin and cos and also in terms of tan with proof and examples.<\/p>\n
Let’s begin –<\/p>\n
Sin 2A = 2 sin A cos A<\/p><\/blockquote>\n
Proof :<\/strong><\/p>\n
We have,<\/p>\n
Sin (A + B) = sin A cos B + cos A sin B<\/p>\n
Replacing B by A,<\/p>\n
\\(\\implies\\) sin 2A = sin A cos A + cos A sin A<\/p>\n
\\(\\implies\\) sin 2A = 2 sin A cos A<\/p>\n
We can also write above relation in terms of angle A\/2, just replace A by A\/2, we get<\/p>\n
sin A = \\(2 sin ({A\\over 2}) cos ({A\\over 2})\\)<\/p><\/blockquote>\n
(ii) Sin 2A Formula in Terms of Tan :<\/h3>\n
Sin 2A = \\(2 tan A\\over 1 + tan^2 A\\)<\/p><\/blockquote>\n
Proof :<\/strong><\/p>\n
We have,<\/p>\n
sin 2A = 2 sin A cos A<\/p>\n
\\(\\implies\\) sin 2A = \\(2 sin A cos A\\over sin^2 A + cos^2 A\\)<\/p>\n
[ \\(\\because\\) \\(sin^2 A + cos^2 A\\) = 1 ]<\/p>\n
Now, Dividing numerator and denominator by \\(cos^2 A\\),<\/p>\n
\\(\\implies\\) sin 2A = \\({2sin A cos A\\over cos^2 A}\\over {sin^2 A + cos^2 A\\over cos^2 A}\\)<\/p>\n
\\(\\implies\\) sin 2A = \\(2 tan A\\over 1 + tan^2 A\\)<\/p>\n
We can also write above relation in terms of angle A\/2, just replace A by A\/2, we get<\/p>\n
sin A = \\(2 tan ({A\\over 2})\\over 1 + tan^2 ({A\\over 2})\\)<\/p><\/blockquote>\n
Example<\/strong><\/span> : Find the value of Sin 120 ?<\/p>\n
Solution<\/span><\/strong> : We Know that sin 60 = \\(\\sqrt{3}\\over 2\\) and cos 60 = \\(1\\over 2\\)<\/p>\n
By using above formula,<\/p>\n
sin 120 = 2 sin 60 cos 60 = 2 \\(\\times\\) \\(\\sqrt{3}\\over 2\\) \\(\\times\\) \\(1\\over 2\\)<\/p>\n
\\(\\implies\\) sin 120 = \\(\\sqrt{3}\\over 2\\)<\/p>\n
Example<\/strong><\/span> : If sin A = \\(3\\over 5\\), where 0 < A < 90, find the value of sin 2A ?<\/p>\n
Solution<\/span><\/strong> : We have,<\/p>\n
sin A = \\(3\\over 5\\) where 0 < A < 90 degrees<\/p>\n
\\(\\therefore\\) \\(cos^2 A\\) = 1 – \\(sin^2 A\\)<\/p>\n
\\(\\implies\\) cos A = \\(\\sqrt{1 – sin^2 A}\\) = \\(\\sqrt{1 – {9\\over 25}}\\) = \\(4\\over 5\\)<\/p>\n
By using above formula,<\/p>\n
sin 2A = 2 sin A cos A = 2 \\(\\times\\) \\(3\\over 5\\) \\(\\times\\) \\(4\\over 5\\)<\/p>\n
\\(\\implies\\) sin 2A = \\(24\\over 25\\)<\/p>\n","protected":false},"excerpt":{"rendered":"
Here you will learn what is the formula of sin 2A in terms of sin and cos and also in terms of tan with proof and examples. Let’s begin – Sin 2A Formula (i) In Terms of Cos and Sin : Sin 2A = 2 sin A cos A Proof : We have, Sin (A …<\/p>\n