{"id":9356,"date":"2022-01-11T00:15:24","date_gmt":"2022-01-10T18:45:24","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9356"},"modified":"2022-01-11T00:19:52","modified_gmt":"2022-01-10T18:49:52","slug":"prove-that-sin-a-sin-60-a-sin-60-a-1over-4-sin-3a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-sin-a-sin-60-a-sin-60-a-1over-4-sin-3a\/","title":{"rendered":"Prove that sin A sin (60 – A) sin (60 + A) = \\(1\\over 4\\) sin 3A."},"content":{"rendered":"
We have,<\/p>\n
L.H.S = sin A sin (60 – A) sin (60 + A)<\/p>\n
\\(\\implies\\) L.H.S = sin A (\\(sin^2 60 – sin^2 A\\))<\/p>\n
[ By using this formula, sin (A + B) sin (A – B) = \\(sin^2 A\\) – \\(sin^2 B\\)\u00a0 above ]<\/p>\n
\\(\\implies\\) L.H.S = sin A (\\(3\\over 4\\) – \\(sin^2 A\\)) = \\(1\\over 4\\) sin A \\((3 – 4 sin^2 A)\\)<\/p>\n
\\(\\implies\\) L.H.S = \\(1\\over 4\\)(3 sin A – \\(4 sin^3 A\\))<\/p>\n
Since 3 sin A – \\(4 sin^3 A\\) = sin 3A,<\/p>\n
\\(\\implies\\) L.H.S = \\(1\\over 4\\) sin 3A = R.H.S<\/p>\n\n\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : We have, L.H.S = sin A sin (60 – A) sin (60 + A) \\(\\implies\\) L.H.S = sin A (\\(sin^2 60 – sin^2 A\\)) [ By using this formula, sin (A + B) sin (A – B) = \\(sin^2 A\\) – \\(sin^2 B\\)\u00a0 above ] \\(\\implies\\) L.H.S = sin A (\\(3\\over 4\\) – …<\/p>\n