{"id":9363,"date":"2022-01-11T01:02:32","date_gmt":"2022-01-10T19:32:32","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9363"},"modified":"2022-01-16T17:14:16","modified_gmt":"2022-01-16T11:44:16","slug":"cos-3a-formula-proof-examples","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/cos-3a-formula-proof-examples\/","title":{"rendered":"Cos 3A Formula – Proof and Examples"},"content":{"rendered":"
Here you will learn what is the formula of cos 3A with proof and examples based on it.<\/p>\n
Let’s begin –<\/p>\n
The formula of cos 3A<\/strong> is \\(4 cos^3 A – 3 cos A\\).<\/strong><\/p><\/blockquote>\n
Proof :<\/strong><\/p>\n
We have,<\/p>\n
cos (A + B) = cos A cos B – sin A sin B<\/p>\n
Replacing B by 2A,<\/p>\n
\\(\\implies\\) cos 3A = cos A cos 2A – sin A sin 2A<\/p>\n
\\(\\implies\\) cos 3A = cos A (\\(2 cos^2 A – 1\\)) + sin A (2 sin A cos A)<\/p>\n
[ \\(\\because\\) cos 2A = \\(2 cos^2 A – 1\\) & sin 2A = 2 sin A cos A ]<\/p>\n
\\(\\implies\\) cos 3A = \\(2 cos^3 A\\) – cos A + 2 cos A (\\(sin^2 A\\))<\/p>\n
\\(\\implies\\) cos 3A = \\(2 cos^3 A\\) – cos A + 2 cos A (\\(1 – cos^2 A\\))<\/p>\n
Hence, cos 3A = \\(4 cos^3 A\\) – 3 cos A<\/p>\n
We can also write above relation of angle A in terms of angle A\/3, just replace A by A\/3, we get<\/p>\n
cos A = \\(4 cos^3 {A\\over 3}\\) – \\(3 cos {A\\over 3}\\)<\/p><\/blockquote>\n
Example<\/strong><\/span> : Prove that : \\(8 cos^3 {\\pi\\over 3}\\) – \\(6 sin {\\pi\\over 9}\\) = 1.<\/p>\n
Solution<\/span><\/strong> : We have,<\/p>\n
L.H.S = 2(\\(8 cos^3 {\\pi\\over 3}\\) – \\(6 sin {\\pi\\over 9}\\)) = \\(2 cos (3 \\times {\\pi\\over 9})\\)<\/p>\n
L.H.S = \\(2 cos {\\pi\\over 3}\\) = 1 = R.H.S<\/p>\n
Example<\/strong><\/span> : Prove that cos A cos (60 – A) cos (60 + A) = \\(1\\over 4\\) cos 3A.<\/p>\n
Solution<\/span><\/strong> : We have,<\/p>\n
L.H.S = cos A cos (60 – A) cos (60 + A)<\/p>\n
\\(\\implies\\) L.H.S = cos A (\\(cos^2 60 – sin^2 A\\))<\/p>\n
[ By using this formula, cos (A + B) cos (A – B) = \\(cos^2 A\\) – \\(sin^2 B\\) above ]<\/p>\n
\\(\\implies\\) L.H.S = cos A (\\(1\\over 4\\) – \\(sin^2 A\\)) = cos A \\(({1\\over 4} – (1 – cos^2 A))\\)<\/p>\n
\\(\\implies\\) L.H.S = cos A (\\({-3\\over 4} + cos^2 A\\))<\/p>\n
L.H.S = \\(1\\over 4\\) cos A (\\(-3 + 4 cos^2 A\\)) = \\(1\\over 4\\)(\\(4 cos^3 A\\) – 3 cos A)<\/p>\n
Since \\(4 cos^3 A\\) – 3 cos A = cos 3A,<\/p>\n
\\(\\implies\\) L.H.S = \\(1\\over 4\\) cos 3A = R.H.S<\/p>\n","protected":false},"excerpt":{"rendered":"
Here you will learn what is the formula of cos 3A with proof and examples based on it. Let’s begin – Cos 3A Formula The formula of cos 3A is \\(4 cos^3 A – 3 cos A\\). Proof : We have, cos (A + B) = cos A cos B – sin A sin B …<\/p>\n