{"id":9375,"date":"2022-01-11T01:00:06","date_gmt":"2022-01-10T19:30:06","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9375"},"modified":"2022-01-11T01:53:29","modified_gmt":"2022-01-10T20:23:29","slug":"prove-that-cos-a-cos-60-a-cos-60-a-1over-4-cos-3a","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/prove-that-cos-a-cos-60-a-cos-60-a-1over-4-cos-3a\/","title":{"rendered":"Prove that cos A cos (60 – A) cos (60 + A) = \\(1\\over 4\\) cos 3A."},"content":{"rendered":"
We have,<\/p>\n
L.H.S = cos A cos (60 – A) cos (60 + A)<\/p>\n
\\(\\implies\\) L.H.S = cos A (\\(cos^2 60 – sin^2 A\\))<\/p>\n
[ By using this formula, cos (A + B) cos (A – B) = \\(cos^2 A\\) – \\(sin^2 B\\) above ]<\/p>\n
\\(\\implies\\) L.H.S = cos A (\\(1\\over 4\\) – \\(sin^2 A\\)) = cos A \\(({1\\over 4} – (1 – cos^2 A))\\)<\/p>\n
\\(\\implies\\) L.H.S = cos A (\\({-3\\over 4} + cos^2 A\\))<\/p>\n
\\(\\implies\\) L.H.S = \\(1\\over 4\\) cos A (\\(-3 + 4 cos^2 A\\)) = \\(1\\over 4\\)(\\(4 cos^3 A\\) – 3 cos A)<\/p>\n
Since \\(4 cos^3 A\\) – 3 cos A = cos 3A,<\/p>\n
\\(\\implies\\) L.H.S = \\(1\\over 4\\) cos 3A = R.H.S<\/p>\n","protected":false},"excerpt":{"rendered":"
Solution : We have, L.H.S = cos A cos (60 – A) cos (60 + A) \\(\\implies\\) L.H.S = cos A (\\(cos^2 60 – sin^2 A\\)) [ By using this formula, cos (A + B) cos (A – B) = \\(cos^2 A\\) – \\(sin^2 B\\) above ] \\(\\implies\\) L.H.S = cos A (\\(1\\over 4\\) – …<\/p>\n