{"id":9394,"date":"2022-01-11T13:36:12","date_gmt":"2022-01-11T08:06:12","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9394"},"modified":"2022-01-11T13:37:22","modified_gmt":"2022-01-11T08:07:22","slug":"what-is-the-value-of-sin-18-degrees","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-value-of-sin-18-degrees\/","title":{"rendered":"What is the Value of Sin 18 Degrees ?"},"content":{"rendered":"
The value of sin 18 degrees<\/strong> is \\(\\sqrt{5} – 1\\over 4\\)<\/strong>.<\/p>\n Proof : <\/strong><\/p>\n Let \\(\\theta\\) = 18 degrees. Then,<\/p>\n \\(5\\theta\\) = 90 degrees<\/p>\n \\(\\implies\\) \\(2\\theta\\) + \\(3\\theta\\) = 90<\/p>\n \\(\\implies\\) \\(2\\theta\\) = 90 – \\(3\\theta\\)<\/p>\n \\(\\implies\\) \\(sin 2\\theta\\) = \\(sin (90 – 3\\theta)\\)<\/p>\n \\(\\implies\\) \\(sin 2\\theta\\) = \\(cos 3\\theta\\)<\/p>\n By using the formula of \\(sin 2\\theta\\)<\/a> and \\(cos 3\\theta\\)<\/a><\/p>\n \\(\\implies\\) \\(2 sin \\theta cos \\theta\\) = \\(4 cos^3 \\theta – 3 cos \\theta\\)<\/p>\n \\(\\implies\\) \\(cos \\theta\\) (\\(2 sin \\theta – 4 cos^2 \\theta + 3\\) = 0<\/p>\n \\(\\implies\\) \\(2 sin \\theta\\) – \\(4 cos^2 \\theta\\) + 3 = 0<\/p>\n [ \\(\\because\\) \\(cos \\theta\\) = cos 18 \\(\\ne\\) 0 ]<\/p>\n \\(\\implies\\) \\(2 sin \\theta\\) – \\(4(1 – sin^2 \\theta)\\) + 3 = 0<\/p>\n \\(\\implies\\) \\(4 sin^2 \\theta\\) + \\(2 sin \\theta\\) – 1 = 0<\/p>\n