{"id":9437,"date":"2022-01-13T22:57:41","date_gmt":"2022-01-13T17:27:41","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9437"},"modified":"2022-01-13T22:57:45","modified_gmt":"2022-01-13T17:27:45","slug":"what-is-the-general-solution-of-cos-theta-0","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-general-solution-of-cos-theta-0\/","title":{"rendered":"What is the General Solution of \\(Cos \\theta\\) = 0 ?"},"content":{"rendered":"
The general solution of \\(cos \\theta\\) = 0<\/strong> is given by \\(\\theta\\) = \\((2n + 1){\\pi\\over 2}\\), n \\(\\in\\) Z.<\/strong><\/p>\n Proof :<\/strong><\/p>\n We have,<\/p>\n \\(cos \\theta\\) = \\(PM\\over OP\\)<\/p>\n \\(\\therefore\\)\u00a0 \u00a0\\(cos \\theta\\) = 0<\/p>\n \\(\\implies\\)\u00a0 \\(OM\\over OP\\) = 0<\/p>\n \\(\\implies\\) OM = 0<\/p>\n \\(\\implies\\)\u00a0 OP coincides with OY or OY’<\/p>\n \\(\\implies\\)\u00a0 \\(\\theta\\) =\u00a0 \\(\\pm{\\pi\\over 2}\\), \\(\\pm{3\\pi\\over 2}\\), \\(\\pm{5\\pi\\over 2}\\), …….<\/p>\n \\(\\implies\\) \\(\\theta\\) = \\((2n + 1){\\pi\\over 2}\\),\u00a0 n \\(\\in\\) Z<\/p>\n Hence, \\(\\theta\\) = \\((2n + 1){\\pi\\over 2}\\),\u00a0 n \\(\\in\\) Z is the general solution of \\(cos \\theta\\) = 0.<\/p>\n","protected":false},"excerpt":{"rendered":" Solution : The general solution of \\(cos \\theta\\) = 0 is given by \\(\\theta\\) = \\((2n + 1){\\pi\\over 2}\\), n \\(\\in\\) Z. Proof : We have, \\(cos \\theta\\) = \\(PM\\over OP\\) \\(\\therefore\\)\u00a0 \u00a0\\(cos \\theta\\) = 0 \\(\\implies\\)\u00a0 \\(OM\\over OP\\) = 0 \\(\\implies\\) OM = 0 \\(\\implies\\)\u00a0 OP coincides with OY or OY’ \\(\\implies\\)\u00a0 \\(\\theta\\) =\u00a0 …<\/p>\n