{"id":9449,"date":"2022-01-14T16:22:42","date_gmt":"2022-01-14T10:52:42","guid":{"rendered":"https:\/\/mathemerize.com\/?p=9449"},"modified":"2022-01-14T16:22:45","modified_gmt":"2022-01-14T10:52:45","slug":"what-is-the-general-solution-of-sin-theta-sin-alpha","status":"publish","type":"post","link":"https:\/\/mathemerize.com\/what-is-the-general-solution-of-sin-theta-sin-alpha\/","title":{"rendered":"What is the General Solution of \\(sin \\theta\\) = \\(sin \\alpha\\) ?"},"content":{"rendered":"
The general solution of \\(sin \\theta\\) = \\(sin \\alpha\\)<\/strong> is given by \\(\\theta\\) = \\(n\\pi + (-1)^n \\alpha\\), n \\(\\in\\) Z.<\/strong><\/p>\n Proof :<\/strong><\/p>\n We have, \\(sin \\theta\\) = \\(sin \\alpha\\)<\/p>\n \\(\\implies\\) \\(sin \\theta\\) – \\(sin \\alpha\\) = 0<\/p>\n \\(\\implies\\) \\(2 sin ({\\theta – \\alpha\\over 2}) cos({\\theta + \\alpha\\over 2})\\) = 0<\/p>\n \\(\\implies\\) \\(sin ({\\theta – \\alpha\\over 2})\\) = 0 or, \\(cos({\\theta + \\alpha\\over 2})\\) = 0<\/p>\n \\(\\implies\\) \\({\\theta – \\alpha\\over 2}\\) = \\(m\\pi\\) or \\({\\theta + \\alpha\\over 2}\\) = \\((2m + 1){\\pi\\over 2}\\), m \\(\\in\\) Z<\/p>\n \\(\\implies\\) \\(\\theta\\) = \\(2m\\pi + \\alpha\\), \\(\\in\\) Z or, \\(\\theta\\) = \\((2m + 1)\\pi – \\alpha\\), m \\(\\in\\) Z.<\/p>\n \\(\\implies\\) \\(\\theta\\) = (any even multiple of \\(\\pi\\)) + \\(\\alpha\\) or, \\(\\theta\\) = (any odd multiple of \\(\\pi\\)) – \\(\\alpha\\)<\/p>\n \\(\\implies\\) \\(\\theta\\) = \\(n\\pi + (-1)^n \\alpha\\), where n \\(\\in\\) Z.<\/p>\n Remark : <\/strong>The equation \\(cosec \\theta\\) = \\(cosec \\alpha\\) is equivalent to \\(sin \\theta\\) = \\(sin \\alpha\\). Thus, \\(cosec \\theta\\) = \\(cosec \\alpha\\) and \\(sin \\theta\\) = \\(sin \\alpha\\) have the same general solution.<\/p>\n","protected":false},"excerpt":{"rendered":" Solution : The general solution of \\(sin \\theta\\) = \\(sin \\alpha\\) is given by \\(\\theta\\) = \\(n\\pi + (-1)^n \\alpha\\), n \\(\\in\\) Z. Proof : We have, \\(sin \\theta\\) = \\(sin \\alpha\\) \\(\\implies\\) \\(sin \\theta\\) – \\(sin \\alpha\\) = 0 \\(\\implies\\) \\(2 sin ({\\theta – \\alpha\\over 2}) cos({\\theta + \\alpha\\over 2})\\) = 0 \\(\\implies\\) \\(sin …<\/p>\n